1
|
Giordano Attianese GMP, Shui S, Cribioli E, Triboulet M, Scheller L, Hafezi M, Reichenbach P, Gainza P, Georgeon S, Correia BE, Irving M. Dual ON/OFF-switch chimeric antigen receptor controlled by two clinically approved drugs. Proc Natl Acad Sci U S A 2024; 121:e2405085121. [PMID: 39453747 PMCID: PMC11536088 DOI: 10.1073/pnas.2405085121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/07/2024] [Indexed: 10/27/2024] Open
Abstract
The ability to remotely control the activity of chimeric antigen receptors (CARs) with small molecules can improve the safety and efficacy of gene-modified T cells. Split ON- or OFF-switch CARs involve the dissociation of tumor-antigen binding from T cell activation (i.e., CD3ζ) on the receptor (R-) and signaling (S-) chains, respectively, that either associate or are disrupted in the presence of a small molecule. Here, we have developed an inducible (i)ON-CAR comprising the anti-apoptotic B cell lymphoma protein 2 protein in the ectodomain of both chains which associate in the presence of venetoclax. We showed that inducible ON (iON)-CAR T cells respond to target tumors cells in the presence of venetoclax or the BH3 mimetic navitoclax in a dose-dependent manner, while there is no impact of the drugs on equivalent second generation-CAR T cells. Within 48 h of venetoclax withdrawal, iON-CAR T cells lose the ability to respond to target tumor cells in vitro as evaluated by Interferon-gamma (IFNγ) production, and they are reliant upon the presence of venetoclax for in vivo activity. Finally, by fusing a degron sequence to the endodomain of the iON-CAR S-chain we generated an all-in-one ON/OFF-switch CAR, the iONØ-CAR, down-regulated by lenalidomide within 4 to 6 for functionally inactive T cells (no IFNγ production) within 24 h. We propose that our remote-control CAR designs can reduce toxicity in the clinic. Moreover, the periodic rest of iON and iONØ-CAR T cells may alleviate exhaustion and hence augment persistence and long-term tumor control in patients.
Collapse
Affiliation(s)
- Greta Maria Paola Giordano Attianese
- Ludwig Institute for Cancer Research Lausanne, Department of Oncology, University of Lausanne and Lausanne University Hospital, Lausanne1011, Switzerland
| | - Sailan Shui
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne1011, Switzerland
- Swiss Institute of Bioinformatics, Lausanne1011, Switzerland
| | - Elisabetta Cribioli
- Ludwig Institute for Cancer Research Lausanne, Department of Oncology, University of Lausanne and Lausanne University Hospital, Lausanne1011, Switzerland
| | - Melanie Triboulet
- Ludwig Institute for Cancer Research Lausanne, Department of Oncology, University of Lausanne and Lausanne University Hospital, Lausanne1011, Switzerland
| | - Leo Scheller
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne1011, Switzerland
- Swiss Institute of Bioinformatics, Lausanne1011, Switzerland
| | - Morteza Hafezi
- Ludwig Institute for Cancer Research Lausanne, Department of Oncology, University of Lausanne and Lausanne University Hospital, Lausanne1011, Switzerland
| | - Patrick Reichenbach
- Ludwig Institute for Cancer Research Lausanne, Department of Oncology, University of Lausanne and Lausanne University Hospital, Lausanne1011, Switzerland
| | - Pablo Gainza
- Ludwig Institute for Cancer Research Lausanne, Department of Oncology, University of Lausanne and Lausanne University Hospital, Lausanne1011, Switzerland
- Swiss Institute of Bioinformatics, Lausanne1011, Switzerland
| | - Sandrine Georgeon
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne1011, Switzerland
- Swiss Institute of Bioinformatics, Lausanne1011, Switzerland
| | - Bruno E. Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne1011, Switzerland
- Swiss Institute of Bioinformatics, Lausanne1011, Switzerland
| | - Melita Irving
- Ludwig Institute for Cancer Research Lausanne, Department of Oncology, University of Lausanne and Lausanne University Hospital, Lausanne1011, Switzerland
| |
Collapse
|
2
|
Abstract
Linker engineering constitutes a critical, yet frequently underestimated aspect in the construction of synthetic protein switches and sensors. Notably, systematic strategies to engineer linkers by predictive means remain largely elusive to date. This is primarily due to our insufficient understanding how the biophysical properties that underlie linker functions mediate the conformational transitions in artificially engineered protein switches and sensors. The construction of synthetic protein switches and sensors therefore heavily relies on experimental trial-and-error. Yet, methods for effectively generating linker diversity at the genetic level are scarce. Addressing this technical shortcoming, iterative functional linker cloning (iFLinkC) enables the combinatorial assembly of linker elements with functional domains from sequence verified repositories that are developed and stored in-house. The assembly process is highly scalable and given its recursive nature generates linker diversity in a combinatorial and exponential fashion based on a limited number of linker elements.
Collapse
|
3
|
Gräwe A, Ranglack J, Weber W, Stein V. Engineering artificial signalling functions with proteases. Curr Opin Biotechnol 2020; 63:1-7. [DOI: 10.1016/j.copbio.2019.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 01/01/2023]
|
4
|
Gräwe A, Ranglack J, Weyrich A, Stein V. iFLinkC: an iterative functional linker cloning strategy for the combinatorial assembly and recombination of linker peptides with functional domains. Nucleic Acids Res 2020; 48:e24. [PMID: 31925441 PMCID: PMC7039005 DOI: 10.1093/nar/gkz1210] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 02/02/2023] Open
Abstract
Recent years have witnessed increasing efforts to engineer artificial biological functions through recombination of modular-organized toolboxes of protein scaffolds and parts. A critical, yet frequently neglected aspect concerns the identity of peptide linkers or spacers connecting individual domains which remain poorly understood and challenging to assemble. Addressing these limitations, iFlinkC comprises a highly scalable DNA assembly process that facilitates the combinatorial recombination of functional domains with linkers of varying length and flexibility, thereby overcoming challenges with high GC-content and the repeat nature of linker elements. The capacity of iFLinkC is demonstrated in the construction of synthetic protease switches featuring PDZ-FN3-based affinity clamps and single-chain FKBP12-FRB receptors as allosteric inputs. Library screening experiments demonstrate that linker space is highly plastic as the induction of allosterically regulated protease switches can vary from >150-fold switch-ON to >13-fold switch-OFF solely depending on the identity of the connecting linkers and relative orientation of functional domains. In addition, Pro-rich linkers yield the most potent switches contradicting the conventional use of flexible Gly-Ser linkers. Given the ease and efficiency how functional domains can be readily recombined with any type of linker, iFLinkC is anticipated to be widely applicable to the assembly of any type of fusion protein.
Collapse
Affiliation(s)
- Alexander Gräwe
- Fachbereich Biologie, Technische Universität Darmstadt, 64287 Darmstadt, Germany.,Centre for Synthetic Biology, Technische Universität Darmstadt, 64283 Darmstadt, Germany
| | - Jan Ranglack
- Fachbereich Biologie, Technische Universität Darmstadt, 64287 Darmstadt, Germany.,Centre for Synthetic Biology, Technische Universität Darmstadt, 64283 Darmstadt, Germany
| | - Anastasia Weyrich
- Fachbereich Biologie, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Viktor Stein
- Fachbereich Biologie, Technische Universität Darmstadt, 64287 Darmstadt, Germany.,Centre for Synthetic Biology, Technische Universität Darmstadt, 64283 Darmstadt, Germany
| |
Collapse
|