1
|
Kolapalli SP, Beese CJ, Reid SE, Brynjólfsdóttir SH, Jørgensen MH, Jain A, Cuenco J, Lewinska M, Abdul-Al A, López AR, Jäättelä M, Sakamoto K, Andersen JB, Maeda K, Rusten TE, Lund AH, Frankel LB. Pellino 3 E3 ligase promotes starvation-induced autophagy to prevent hepatic steatosis. SCIENCE ADVANCES 2025; 11:eadr2450. [PMID: 39823344 PMCID: PMC11740972 DOI: 10.1126/sciadv.adr2450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025]
Abstract
Nutrient deprivation is a major trigger of autophagy, a conserved quality control and recycling process essential for cellular and tissue homeostasis. In a high-content image-based screen of the human ubiquitome, we here identify the E3 ligase Pellino 3 (PELI3) as a crucial regulator of starvation-induced autophagy. Mechanistically, PELI3 localizes to autophagic membranes, where it interacts with the ATG8 proteins through an LC3-interacting region (LIR). This facilitates PELI3-mediated ubiquitination of ULK1, driving ULK1's subsequent proteasomal degradation. PELI3 depletion leads to an aberrant accumulation and mislocalization of ULK1 and disrupts the early steps of autophagosome formation. Genetic deletion of Peli3 in mice impairs fasting-induced autophagy in the liver and enhances starvation-induced hepatic steatosis by reducing autophagy-mediated clearance of lipid droplets. Notably, PELI3 expression is decreased in the livers of patients with metabolic dysfunction-associated steatotic liver disease (MASLD), suggesting its role in hepatic steatosis development in humans. The findings suggest that PELI3-mediated control of autophagy plays a protective role in liver health.
Collapse
Affiliation(s)
- Srinivasa P. Kolapalli
- Cellular Homeostasis and Recycling, Danish Cancer Institute, DK-2100 Copenhagen, Denmark
| | - Carsten J. Beese
- Cellular Homeostasis and Recycling, Danish Cancer Institute, DK-2100 Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Steven E. Reid
- Cellular Homeostasis and Recycling, Danish Cancer Institute, DK-2100 Copenhagen, Denmark
| | | | - Maria H. Jørgensen
- Cellular Homeostasis and Recycling, Danish Cancer Institute, DK-2100 Copenhagen, Denmark
| | - Ashish Jain
- Center for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Joyceline Cuenco
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Monika Lewinska
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Gubra, DK-2970 Hørsholm, Denmark
| | - Ahmad Abdul-Al
- Cellular Homeostasis and Recycling, Danish Cancer Institute, DK-2100 Copenhagen, Denmark
| | - Aida R. López
- Cellular Homeostasis and Recycling, Danish Cancer Institute, DK-2100 Copenhagen, Denmark
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, DK-2100 Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jesper B. Andersen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kenji Maeda
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, DK-2100 Copenhagen, Denmark
| | - Tor E. Rusten
- Center for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Anders H. Lund
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lisa B. Frankel
- Cellular Homeostasis and Recycling, Danish Cancer Institute, DK-2100 Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
2
|
Nielsen IØ, Clemmensen KKB, Fogde DL, Dietrich TN, Giacobini JD, Bilgin M, Jäättelä M, Maeda K. Cationic amphiphilic drugs induce accumulation of cytolytic lysoglycerophospholipids in the lysosomes of cancer cells and block their recycling into common membrane glycerophospholipids. Mol Biol Cell 2024; 35:ar25. [PMID: 38117591 PMCID: PMC10916870 DOI: 10.1091/mbc.e23-06-0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023] Open
Abstract
Lysosomes are acidic organelles responsible for lipid catabolism, and their functions can be disrupted by cationic amphiphilic drugs that neutralize lumenal pH and thereby inhibit most lysosomal hydrolases. These drugs can also induce lysosomal membrane permeabilization and cancer cell death, but the underlying mechanism remains elusive. Here, we uncover that the cationic amphiphilic drugs induce a substantial accumulation of cytolytic lysoglycerophospholipids within the lysosomes of cancer cells, and thereby prevent the recycling of lysoglycerophospholipids to produce common membrane glycerophospholipids. Using quantitative mass spectrometry-based shotgun lipidomics, we demonstrate that structurally diverse cationic amphiphilic drugs, along with other types of lysosomal pH-neutralizing reagents, elevate the amounts of lysoglycerophospholipids in MCF7 breast carcinoma cells. Lysoglycerophospholipids constitute ∼11 mol% of total glycerophospholipids in lysosomes purified from MCF7 cells, compared with ∼1 mol% in the cell lysates. Treatment with cationic amphiphilic drug siramesine further elevates the lysosomal lysoglycerophospholipid content to ∼24 mol% of total glycerophospholipids. Exogenously added traceable lysophosphatidylcholine is rapidly acylated to form diacylphosphatidylcholine, but siramesine treatment sequesters the lysophosphatidylcholine in the lysosomes and prevents it from undergoing acylation. These findings shed light on the unexplored role of lysosomes in the recycling of lysoglycerophospholipids and uncover the mechanism of action of promising anticancer agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Mesut Bilgin
- Lipidomics Core Facility, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Institute (DCI), DK-2100 Copenhagen, Denmark
| | - Marja Jäättelä
- Cell Death and Metabolism, DK-2100 Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kenji Maeda
- Cell Death and Metabolism, DK-2100 Copenhagen, Denmark
| |
Collapse
|
3
|
Ursolic Acid Impairs Cellular Lipid Homeostasis and Lysosomal Membrane Integrity in Breast Carcinoma Cells. Cells 2022; 11:cells11244079. [PMID: 36552844 PMCID: PMC9776894 DOI: 10.3390/cells11244079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, thus the search for new cancer therapies is of utmost importance. Ursolic acid is a naturally occurring pentacyclic triterpene with a wide range of pharmacological activities including anti-inflammatory and anti-neoplastic effects. The latter has been assigned to its ability to promote apoptosis and inhibit cancer cell proliferation by poorly defined mechanisms. In this report, we identify lysosomes as the essential targets of the anti-cancer activity of ursolic acid. The treatment of MCF7 breast cancer cells with ursolic acid elevates lysosomal pH, alters the cellular lipid profile, and causes lysosomal membrane permeabilization and leakage of lysosomal enzymes into the cytosol. Lysosomal membrane permeabilization precedes the essential hallmarks of apoptosis placing it as an initial event in the cascade of effects induced by ursolic acid. The disruption of the lysosomal function impairs the autophagic pathway and likely partakes in the mechanism by which ursolic acid kills cancer cells. Furthermore, we find that combining treatment with ursolic acid and cationic amphiphilic drugs can significantly enhance the degree of lysosomal membrane permeabilization and cell death in breast cancer cells.
Collapse
|
4
|
Shotgun Lipidomic Analysis for Differentiation of Niche Cold Pressed Oils. Molecules 2022; 27:molecules27061848. [PMID: 35335212 PMCID: PMC8949066 DOI: 10.3390/molecules27061848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/10/2022] Open
Abstract
The fast-growing food industry is bringing significant number of new products to the market. To protect consumers’ health and rights, it is crucial that food control laboratories are able to ensure reliable quality testing, including product authentication and detection of adulterations. In our study, we applied a fast and eco-friendly method based on shotgun-lipidomic mass spectrometry for the authentication of niche edible oils. Comprehensive lipid profiles of camelina (CA), flax (FL) and hemp (HP) seed oils were obtained. With the aid of principal component analysis (PCA), it was possible to detect and distinguish each of them based on their lipid profiles. Lipidomic markers characteristic ofthe oils were also identified, which can be used as targets and expedite development of new multiplexed testing methods.
Collapse
|
5
|
Stahl-Meyer J, Holland LKK, Liu B, Maeda K, Jäättelä M. Lysosomal Changes in Mitosis. Cells 2022; 11:875. [PMID: 35269496 PMCID: PMC8909281 DOI: 10.3390/cells11050875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 01/27/2023] Open
Abstract
The recent discovery demonstrating that the leakage of cathepsin B from mitotic lysosomes assists mitotic chromosome segregation indicates that lysosomal membrane integrity can be spatiotemporally regulated. Unlike many other organelles, structural and functional alterations of lysosomes during mitosis remain, however, largely uncharted. Here, we demonstrate substantial differences in lysosomal proteome, lipidome, size, and pH between lysosomes that were isolated from human U2OS osteosarcoma cells either in mitosis or in interphase. The combination of pharmacological synchronization and mitotic shake-off yielded ~68% of cells in mitosis allowing us to investigate mitosis-specific lysosomal changes by comparing cell populations that were highly enriched in mitotic cells to those mainly in the G1 or G2 phases of the cell cycle. Mitotic cells had significantly reduced levels of lysosomal-associated membrane protein (LAMP) 1 and the active forms of lysosomal cathepsin B protease. Similar trends were observed in levels of acid sphingomyelinase and most other lysosomal proteins that were studied. The altered protein content was accompanied by increases in the size and pH of LAMP2-positive vesicles. Moreover, mass spectrometry-based shotgun lipidomics of purified lysosomes revealed elevated levels of sphingolipids, especially sphingomyelin and hexocylceramide, and lysoglyserophospholipids in mitotic lysosomes. Interestingly, LAMPs and acid sphingomyelinase have been reported to stabilize lysosomal membranes, whereas sphingomyelin and lysoglyserophospholipids have an opposite effect. Thus, the observed lysosomal changes during the cell cycle may partially explain the reduced lysosomal membrane integrity in mitotic cells.
Collapse
Affiliation(s)
- Jonathan Stahl-Meyer
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (L.K.K.H.); (B.L.); (K.M.)
| | - Lya Katrine Kauffeldt Holland
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (L.K.K.H.); (B.L.); (K.M.)
| | - Bin Liu
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (L.K.K.H.); (B.L.); (K.M.)
| | - Kenji Maeda
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (L.K.K.H.); (B.L.); (K.M.)
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (L.K.K.H.); (B.L.); (K.M.)
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
6
|
Acid ceramidase controls apoptosis and increases autophagy in human melanoma cells treated with doxorubicin. Sci Rep 2021; 11:11221. [PMID: 34045496 PMCID: PMC8159975 DOI: 10.1038/s41598-021-90219-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/04/2021] [Indexed: 02/04/2023] Open
Abstract
Acid ceramidase (AC) is a lysosomal hydrolase encoded by the ASAH1 gene, which cleaves ceramides into sphingosine and fatty acid. AC is expressed at high levels in most human melanoma cell lines and may confer resistance against chemotherapeutic agents. One such agent, doxorubicin, was shown to increase ceramide levels in melanoma cells. Ceramides contribute to the regulation of autophagy and apoptosis. Here we investigated the impact of AC ablation via CRISPR-Cas9 gene editing on the response of A375 melanoma cells to doxorubicin. We found that doxorubicin activates the autophagic response in wild-type A375 cells, which effectively resist apoptotic cell death. In striking contrast, doxorubicin fails to stimulate autophagy in A375 AC-null cells, which rapidly undergo apoptosis when exposed to the drug. The present work highlights changes that affect melanoma cells during incubation with doxorubicin, in A375 melanoma cells lacking AC. We found that the remarkable reduction in recovery rate after doxorubicin treatment is strictly associated with the impairment of autophagy, that forces the AC-inhibited cells into apoptotic path.
Collapse
|
7
|
Höring M, Ejsing CS, Krautbauer S, Ertl VM, Burkhardt R, Liebisch G. Accurate quantification of lipid species affected by isobaric overlap in Fourier-transform mass spectrometry. J Lipid Res 2021; 62:100050. [PMID: 33600775 PMCID: PMC8010702 DOI: 10.1016/j.jlr.2021.100050] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/21/2021] [Accepted: 02/05/2021] [Indexed: 11/05/2022] Open
Abstract
Lipidomics data require consideration of ions with near-identical masses, which comprises among others the Type-II isotopic overlap. This overlap occurs in series of lipid species differing only by number of double bonds (DBs) mainly because of the natural abundance of 13C-atoms. High-resolution mass spectrometry, such as Fourier-transform mass spectrometry (FTMS), is capable of resolving Type-II overlap depending on mass resolving power. In this work, we evaluated FTMS quantification accuracy of lipid species affected by Type-II overlap. Spike experiments with lipid species pairs of various lipid classes were analyzed by flow injection analysis-FTMS. Accuracy of quantification was evaluated without and with Type-II correction (using relative isotope abundance) as well as utilizing the first isotopic peak (M+1). Isobaric peaks, which were sufficiently resolved, were most accurate without Type-II correction. In cases of partially resolved peaks, we observed peak interference causing distortions in mass and intensity, which is a well-described phenomenon in FTMS. Concentrations of respective species were more accurate when calculated from M+1. Moreover, some minor species, affected by considerable Type-II overlap, could only be quantified by M+1. Unexpectedly, even completely unresolved peaks were substantially overcorrected by Type-II correction because of peak interference. The described method was validated including intraday and interday precisions for human serum and fibroblast samples. Taken together, our results show that accurate quantification of lipid species by FTMS requires resolution-depended data analysis.
Collapse
Affiliation(s)
- Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Verena M Ertl
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
8
|
Nielsen IØ, Groth-Pedersen L, Dicroce-Giacobini J, Jonassen ASH, Mortensen M, Bilgin M, Schmiegelow K, Jäättelä M, Maeda K. Cationic amphiphilic drugs induce elevation in lysoglycerophospholipid levels and cell death in leukemia cells. Metabolomics 2020; 16:91. [PMID: 32851548 DOI: 10.1007/s11306-020-01710-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Repurposing of cationic amphiphilic drugs (CADs) emerges as an attractive therapeutic solution against various cancers, including leukemia. CADs target lysosomal lipid metabolism and preferentially kill cancer cells via induction of lysosomal membrane permeabilization, but the exact effects of CADs on the lysosomal lipid metabolism remain poorly illuminated. OBJECTIVES We aimed to systematically monitor CAD-induced alterations in the quantitative lipid profiles of leukemia cell lines in order to chart effects of CADs on the metabolism of various lipid classes present in these cells. METHODS We conducted this study on eight cultured cell lines representing two leukemia types, acute lymphoblastic leukemia and acute myeloid leukemia. Mass spectrometry-based quantitative shotgun lipidomics was employed to quantify the levels of around 400 lipid species of 26 lipid classes in the leukemia cell lines treated or untreated with a CAD, siramesine. RESULTS The two leukemia types displayed high, but variable sensitivities to CADs and distinct profiles of cellular lipids. Treatment with siramesine rapidly altered the levels of diverse lipid classes in both leukemia types. These included sphingolipid classes previously reported to play key roles in CAD-induced cell death, but also lipids of other categories. We demonstrated that the treatment with siramesine additionally elevated the levels of numerous cytolytic lysoglycerophospholipids in positive correlation with the sensitivity of individual leukemia cell lines to siramesine. CONCLUSIONS Our study shows that CAD treatment alters balance in the metabolism of glycerophospholipids, and proposes elevation in the levels of lysoglycerophospholipids as part of the mechanism leading to CAD-induced cell death of leukemia cells.
Collapse
Affiliation(s)
- Inger Ødum Nielsen
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), 2100, Copenhagen, Denmark
| | - Line Groth-Pedersen
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), 2100, Copenhagen, Denmark
| | - Jano Dicroce-Giacobini
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), 2100, Copenhagen, Denmark
| | - Anna Sofie Holm Jonassen
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), 2100, Copenhagen, Denmark
| | - Monika Mortensen
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), 2100, Copenhagen, Denmark
| | - Mesut Bilgin
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), 2100, Copenhagen, Denmark
| | - Kjeld Schmiegelow
- Department of Paediatrics and Adolescent Medicine, Juliane Marie Centre, Rigshospitalet University Hospital, 2100, Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Marja Jäättelä
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), 2100, Copenhagen, Denmark.
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Kenji Maeda
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center (DCRC), 2100, Copenhagen, Denmark.
| |
Collapse
|
9
|
Vvedenskaya O, Wang Y, Ackerman JM, Knittelfelder O, Shevchenko A. Analytical challenges in human plasma lipidomics: A winding path towards the truth. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Del Vecchio K, Stahelin RV. Investigation of the phosphatidylserine binding properties of the lipid biosensor, Lactadherin C2 (LactC2), in different membrane environments. J Bioenerg Biomembr 2018; 50:1-10. [PMID: 29426977 DOI: 10.1007/s10863-018-9745-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 01/07/2023]
Abstract
Lipid biosensors are robust tools used in both in vitro and in vivo applications of lipid imaging and lipid detection. Lactadherin C2 (LactC2) was described in 2000 as being a potent and specific sensor for phosphatidylserine (PS) (Andersen et al. Biochemistry 39:6200-6206, 2000). PS is an anionic phospholipid enriched in the inner leaflet of the plasma membrane and has paramount roles in apoptosis, cells signaling, and autophagy. The myriad roles PS plays in membrane dynamics make monitoring PS levels and function an important endeavor. LactC2 has functioned as a tantamount PS biosensor namely in the field of cellular imaging. While PS specificity and high affinity of LactC2 for PS containing membranes has been well established, much less is known regarding LactC2 selectivity for subcellular pools of PS or PS within different membrane environments (e.g., in the presence of cholesterol). Thus, there has been a lack of studies that have compared LactC2 PS sensitivity based upon the acyl chain length and saturation or the presence of other host lipids such as cholesterol. Here, we use surface plasmon resonance as a label-free method to quantitatively assess the apparent binding affinity of LactC2 for membranes containing PS with different acyl chains, different fluidity, as well as representative lipid vesicle mimetics of cellular membranes. Results demonstrate that LactC2 is an unbiased sensor for PS, and can sensitively interact with membranes containing PS with different acyl chain saturation and interact with PS species in a cholesterol-independent manner.
Collapse
Affiliation(s)
- Kathryn Del Vecchio
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Robert V Stahelin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|