1
|
Lahey-Rudolph JM, Schönherr R, Jeffries CM, Blanchet CE, Boger J, Ferreira Ramos AS, Riekehr WM, Triandafillidis DP, Valmas A, Margiolaki I, Svergun D, Redecke L. Rapid screening of in cellulo grown protein crystals via a small-angle X-ray scattering/X-ray powder diffraction synergistic approach. J Appl Crystallogr 2020; 53:1169-1180. [PMID: 33117106 PMCID: PMC7534541 DOI: 10.1107/s1600576720010687] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/03/2020] [Indexed: 11/24/2022] Open
Abstract
Crystallization of recombinant proteins in living cells is an exciting new approach for structural biology that provides an alternative to the time-consuming optimization of protein purification and extensive crystal screening steps. Exploiting the potential of this approach requires a more detailed understanding of the cellular processes involved and versatile screening strategies for crystals in a cell culture. Particularly if the target protein forms crystalline structures of unknown morphology only in a small fraction of cells, their detection by applying standard visualization techniques can be time consuming and difficult owing to the environmental challenges imposed by the living cells. In this study, a high-brilliance and low-background bioSAXS beamline is employed for rapid and sensitive detection of protein microcrystals grown within insect cells. On the basis of the presence of Bragg peaks in the recorded small-angle X-ray scattering profiles, it is possible to assess within seconds whether a cell culture contains microcrystals, even in a small percentage of cells. Since such information cannot be obtained by other established detection methods in this time frame, this screening approach has the potential to overcome one of the bottlenecks of intracellular crystal detection. Moreover, the association of the Bragg peak positions in the scattering curves with the unit-cell composition of the protein crystals raises the possibility of investigating the impact of environmental conditions on the crystal structure of the intracellular protein crystals. This information provides valuable insights helping to further understand the in cellulo crystallization process.
Collapse
Affiliation(s)
- Janine Mia Lahey-Rudolph
- Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, Hamburg 22607, Germany
| | - Robert Schönherr
- Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
- Photon Science, Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, Hamburg 22607, Germany
| | - Cy M. Jeffries
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Clément E. Blanchet
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Juliane Boger
- Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
| | | | - Winnie Maria Riekehr
- Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
| | | | - Alexandros Valmas
- Department of Biology, Section of Genetics, Cell Biology and Development, University of Patras, Patras GR-26500, Greece
| | - Irene Margiolaki
- Department of Biology, Section of Genetics, Cell Biology and Development, University of Patras, Patras GR-26500, Greece
| | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Lars Redecke
- Institute of Biochemistry, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
- Photon Science, Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, Hamburg 22607, Germany
| |
Collapse
|