1
|
Zhang C. BeEM: fast and faithful conversion of mmCIF format structure files to PDB format. BMC Bioinformatics 2023; 24:260. [PMID: 37340457 DOI: 10.1186/s12859-023-05388-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/16/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Although mmCIF is the current official format for deposition of protein and nucleic acid structures to the protein data bank (PDB) database, the legacy PDB format is still the primary supported format for many structural bioinformatics tools. Therefore, reliable software to convert mmCIF structure files to PDB files is needed. Unfortunately, existing conversion programs fail to correctly convert many mmCIF files, especially those with many atoms and/or long chain identifies. RESULTS This study proposed BeEM, which converts any mmCIF format structure files to PDB format. BeEM conversion faithfully retains all atomic and chain information, including chain IDs with more than 2 characters, which are not supported by any existing mmCIF to PDB converters. The conversion speed of BeEM is at least ten times faster than existing converters such as MAXIT and Phenix. Part of the reason for the speed improvement is the avoidance of conversion between numerical values and text strings. CONCLUSION BeEM is a fast and accurate tool for mmCIF-to-PDB format conversion, which is a common procedure in structural biology. The source code is available under the BSD licence at https://github.com/kad-ecoli/BeEM/ .
Collapse
Affiliation(s)
- Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Qazi S, Jit BP, Das A, Karthikeyan M, Saxena A, Ray M, Singh AR, Raza K, Jayaram B, Sharma A. BESFA: bioinformatics based evolutionary, structural & functional analysis of prostrate, Placenta, Ovary, Testis, and Embryo (POTE) paralogs. Heliyon 2022; 8:e10476. [PMID: 36132183 PMCID: PMC9483601 DOI: 10.1016/j.heliyon.2022.e10476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/25/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
The POTE family comprises 14 paralogues and is primarily expressed in Prostrate, Placenta, Ovary, Testis, Embryo (POTE), and cancerous cells. The prospective function of the POTE protein family under physiological conditions is less understood. We systematically analyzed their cellular localization and molecular docking analysis to elucidate POTE proteins' structure, function, and Adaptive Divergence. Our results suggest that group three POTE paralogs (POTEE, POTEF, POTEI, POTEJ, and POTEKP (a pseudogene)) exhibits significant variation among other members could be because of their Adaptive Divergence. Furthermore, our molecular docking studies on POTE protein revealed the highest binding affinity with NCI-approved anticancer compounds. Additionally, POTEE, POTEF, POTEI, and POTEJ were subject to an explicit molecular dynamic simulation for 50ns. MM-GBSA and other essential electrostatics were calculated that showcased that only POTEE and POTEF have absolute binding affinities with minimum energy exploitation. Thus, this study’s outcomes are expected to drive cancer research to successful utilization of POTE genes family as a new biomarker, which could pave the way for the discovery of new therapies.
Collapse
Affiliation(s)
- Sahar Qazi
- Department of Biochemistry, All India Institute of Medical Sciences, Delhi 110029, India
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Bimal Prasad Jit
- Department of Biochemistry, All India Institute of Medical Sciences, Delhi 110029, India
| | - Abhishek Das
- Department of Biochemistry, All India Institute of Medical Sciences, Delhi 110029, India
| | - Muthukumarasamy Karthikeyan
- National Chemical Laboratory, Council of Scientific and Industrial Research (NCL-CSIR), Pune, Maharashtra, India
| | - Amit Saxena
- Centre for Development of Advanced Computing, Pune, Maharashtra, India
| | - M.D. Ray
- Dr. B.R.A Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi 110029, India
| | - Angel Rajan Singh
- Dr. B.R.A Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi 110029, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - B. Jayaram
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology, Delhi, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Delhi 110029, India
- Corresponding author.
| |
Collapse
|
3
|
Substrate size-dependent conformational changes of bacterial pectin-binding protein crucial for chemotaxis and assimilation. Sci Rep 2022; 12:12653. [PMID: 35879323 PMCID: PMC9314435 DOI: 10.1038/s41598-022-16540-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/12/2022] [Indexed: 11/08/2022] Open
Abstract
Gram-negative Sphingomonas sp. strain A1 exhibits positive chemotaxis toward acidic polysaccharide pectin. SPH1118 has been identified as a pectin-binding protein involved in both pectin chemotaxis and assimilation. Here we show tertiary structures of SPH1118 with six different conformations as determined by X-ray crystallography. SPH1118 consisted of two domains with a large cleft between the domains and substrates bound to positively charged and aromatic residues in the cleft through hydrogen bond and stacking interactions. Substrate-free SPH1118 adopted three different conformations in the open form. On the other hand, the two domains were closed in substrate-bound form and the domain closure ratio was changed in response to the substrate size, suggesting that the conformational change upon binding to the substrate triggered the expression of pectin chemotaxis and assimilation. This study first clarified that the solute-binding protein with dual functions recognized the substrate through flexible conformational changes in response to the substrate size.
Collapse
|
4
|
Daneshian L, Renggli I, Hanaway R, Offermann LR, Schlachter CR, Hernandez Arriaza R, Henry S, Prakash R, Wybouw N, Dermauw W, Shimizu LS, Van Leeuwen T, Makris TM, Grbic V, Grbic M, Chruszcz M. Structural and functional characterization of β-cyanoalanine synthase from Tetranychus urticae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 142:103722. [PMID: 35063675 DOI: 10.1016/j.ibmb.2022.103722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Tetranychus urticae is a polyphagous spider mite that can feed on more than 1100 plant species including cyanogenic plants. The herbivore genome contains a horizontally acquired gene tetur10g01570 (TuCAS) that was previously shown to participate in cyanide detoxification. To understand the structure and determine the function of TuCAS in T. urticae, crystal structures of the protein with lysine conjugated pyridoxal phosphate (PLP) were determined. These structures reveal extensive TuCAS homology with the β-substituted alanine synthase family, and they show that this enzyme utilizes a similar chemical mechanism involving a stable α-aminoacrylate intermediate in β-cyanoalanine and cysteine synthesis. We demonstrate that TuCAS is more efficient in the synthesis of β-cyanoalanine, which is a product of the detoxification reaction between cysteine and cyanide, than in the biosynthesis of cysteine. Also, the enzyme carries additional enzymatic activities that were not previously described. We show that TuCAS can detoxify cyanide using O-acetyl-L-serine as a substrate, leading to the direct formation of β-cyanoalanine. Moreover, it catalyzes the reaction between the TuCAS-bound α-aminoacrylate intermediate and aromatic compounds with a thiol group. In addition, we have tested several compounds as TuCAS inhibitors. Overall, this study identifies additional functions for TuCAS and provides new molecular insight into the xenobiotic metabolism of T. urticae.
Collapse
Affiliation(s)
- Leily Daneshian
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Isabella Renggli
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Ryan Hanaway
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Lesa R Offermann
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Caleb R Schlachter
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | | | - Shannon Henry
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Rahul Prakash
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Nicky Wybouw
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, 9000, Belgium
| | - Wannes Dermauw
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Merelbeke, 9820, Belgium; Department of Plants and Crops, Ghent University, Ghent, 9000, Belgium
| | - Linda S Shimizu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | | | - Thomas M Makris
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA; Department of Molecular and Structural Biochemistry, NC State University, Raleigh, NC, 27607, USA
| | - Vojislava Grbic
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - Miodrag Grbic
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada; University of La Rioja, Logrono, Spain
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
5
|
Zhao Y, Feng Q, Zhou X, Zhang Y, Lukman M, Jiang J, Ruiz-Carrillo D. Mycobacterium tuberculosis puromycin hydrolase displays a prolyl oligopeptidase fold and an acyl aminopeptidase activity. Proteins 2021; 89:614-622. [PMID: 33426726 DOI: 10.1002/prot.26044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/11/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022]
Abstract
Puromycin-hydrolizing peptidases have been described as members of the prolyl oligopeptidase peptidase family. These enzymes are present across all domains of life but still little is known of the homologs found in the pathogenic bacterium Mycobacterium tuberculosis. The crystal structure of a M. tuberculosis puromycin hydrolase peptidase has been determined at 3 Angstrom resolution, revealing a conserved prolyl oligopeptidase fold, defined by α/β-hydrolase and β-propeller domains with two distinctive loops that occlude access of large substrates to the active site. The enzyme displayed amino peptidase activity with a substrate specificity preference for hydrophobic residues in the decreasing order of phenylalanine, leucine, alanine and proline. The enzyme's active site is lined by residues Glu564 for the coordination of the substrates amino terminal moiety and His561, Val608, Tyr78, Trp306, Phe563 and Ty567 for the accommodation of hydrophobic substrates. The availability of a crystal structure for puromycin hydrolase of M. tuberculosis shall facilitate the development of inhibitors with therapeutic applications.
Collapse
Affiliation(s)
- YuanHao Zhao
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Qiaoli Feng
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Xiao Zhou
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Yan Zhang
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Maxwell Lukman
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Jie Jiang
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - David Ruiz-Carrillo
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| |
Collapse
|
6
|
Radon C, Mittelstädt G, Duffus BR, Bürger J, Hartmann T, Mielke T, Teutloff C, Leimkühler S, Wendler P. Cryo-EM structures reveal intricate Fe-S cluster arrangement and charging in Rhodobacter capsulatus formate dehydrogenase. Nat Commun 2020; 11:1912. [PMID: 32313256 PMCID: PMC7171172 DOI: 10.1038/s41467-020-15614-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/19/2020] [Indexed: 11/09/2022] Open
Abstract
Metal-containing formate dehydrogenases (FDH) catalyse the reversible oxidation of formate to carbon dioxide at their molybdenum or tungsten active site. They display a diverse subunit and cofactor composition, but structural information on these enzymes is limited. Here we report the cryo-electron microscopic structures of the soluble Rhodobacter capsulatus FDH (RcFDH) as isolated and in the presence of reduced nicotinamide adenine dinucleotide (NADH). RcFDH assembles into a 360 kDa dimer of heterotetramers revealing a putative interconnection of electron pathway chains. In the presence of NADH, the RcFDH structure shows charging of cofactors, indicative of an increased electron load. Rhodobacter capsulatus NAD+ dependent formate dehydrogenase (RcFDH) is a molybdoenzyme that catalyses the reversible oxidation of formate to carbon dioxide, and is of interest for biotechnological applications. Here the authors present the cryo-EM structures of RcFDH as isolated from R. capsulatus and in the reduced state with bound NADH, and discuss the enzyme mechanism.
Collapse
Affiliation(s)
- Christin Radon
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, Karl-Liebknecht Strasse 24-25, 14476, Potsdam-Golm, Germany
| | - Gerd Mittelstädt
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, Karl-Liebknecht Strasse 24-25, 14476, Potsdam-Golm, Germany.,Ferrier Research Institute, Victoria University of Wellington, Kelburn Parade, Wellington, 6012, New Zealand
| | - Benjamin R Duffus
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, Karl-Liebknecht Strasse 24-25, 14476, Potsdam-Golm, Germany
| | - Jörg Bürger
- Max-Planck Institute of Molecular Genetics, Ihnestrasse 63-73, 14195, Berlin, Germany.,Charité, Institut für Medizinische Physik und Biophysik, Charitéplatz 1, 10117, Berlin, Germany
| | - Tobias Hartmann
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, Karl-Liebknecht Strasse 24-25, 14476, Potsdam-Golm, Germany
| | - Thorsten Mielke
- Max-Planck Institute of Molecular Genetics, Ihnestrasse 63-73, 14195, Berlin, Germany
| | - Christian Teutloff
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Silke Leimkühler
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, Karl-Liebknecht Strasse 24-25, 14476, Potsdam-Golm, Germany
| | - Petra Wendler
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, Karl-Liebknecht Strasse 24-25, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
7
|
Rohnke BA, Kerfeld CA, Montgomery BL. Binding Options for the Small Subunit-Like Domain of Cyanobacteria to Rubisco. Front Microbiol 2020; 11:187. [PMID: 32180764 PMCID: PMC7059596 DOI: 10.3389/fmicb.2020.00187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/27/2020] [Indexed: 01/13/2023] Open
Abstract
Two proteins found in cyanobacteria contain a C-terminal domain with homology to the small subunit of rubisco (RbcS). These small subunit-like domains (SSLDs) are important features of CcmM, a protein involved in the biogenesis of carboxysomes found in all β-cyanobacteria, and a rubisco activase homolog [activase-like protein of cyanobacteria (ALC)] found in over a third of sequenced cyanobacterial genomes. Interaction with rubisco is crucial to the function of CcmM and is believed to be important to ALC as well. In both cases, the SSLD aggregates rubisco, and this nucleation event may be important in regulating rubisco assembly and activity. Recently, two independent studies supported the conclusion that the SSLD of CcmM binds equatorially to L8S8 holoenzymes of rubisco rather than by displacing an RbcS, as its structural homology would suggest. We use sequence analysis and homology modeling to examine whether the SSLD from the ALC could bind the large subunit of rubisco either via an equatorial interaction or in an RbcS site, if available. We suggest that the SSLD from the ALC of Fremyella diplosiphon could bind either in a vacant RbcS site or equatorially. Our homology modeling takes into account N-terminal residues not represented in available cryo-electron microscopy structures that potentially contribute to the interface between the large subunit of rubisco (RbcL) and RbcS. Here, we suggest the perspective that binding site variability as a means of regulation is plausible and that the dynamic interaction between the RbcL, RbcS, and SSLDs may be important for carboxysome assembly and function.
Collapse
Affiliation(s)
- Brandon A Rohnke
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States.,Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Beronda L Montgomery
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States.,Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
8
|
Pye VE, Rosa A, Bertelli C, Struwe WB, Maslen SL, Corey R, Liko I, Hassall M, Mattiuzzo G, Ballandras-Colas A, Nans A, Takeuchi Y, Stansfeld PJ, Skehel JM, Robinson CV, Pizzato M, Cherepanov P. A bipartite structural organization defines the SERINC family of HIV-1 restriction factors. Nat Struct Mol Biol 2020; 27:78-83. [PMID: 31907454 PMCID: PMC6956856 DOI: 10.1038/s41594-019-0357-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022]
Abstract
The human integral membrane protein SERINC5 potently restricts HIV-1 infectivity and sensitizes the virus to antibody-mediated neutralization. Here, using cryo-EM, we determine the structures of human SERINC5 and its orthologue from Drosophila melanogaster at subnanometer and near-atomic resolution, respectively. The structures reveal a novel fold comprised of ten transmembrane helices organized into two subdomains and bisected by a long diagonal helix. A lipid binding groove and clusters of conserved residues highlight potential functional sites. A structure-based mutagenesis scan identified surface-exposed regions and the interface between the subdomains of SERINC5 as critical for HIV-1-restriction activity. The same regions are also important for viral sensitization to neutralizing antibodies, directly linking the antiviral activity of SERINC5 with remodeling of the HIV-1 envelope glycoprotein.
Collapse
Affiliation(s)
- Valerie E Pye
- Chromatin Structure and Mobile DNA Laboratory, Francis Crick Institute, London, UK
| | - Annachiara Rosa
- Chromatin Structure and Mobile DNA Laboratory, Francis Crick Institute, London, UK
| | - Cinzia Bertelli
- Department of Cellular, Computational and Integrative Biology, University of Trento, Povo, Italy
| | - Weston B Struwe
- Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, UK
| | - Sarah L Maslen
- Biological Mass Spectrometry and Proteomics Laboratory, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Robin Corey
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Idlir Liko
- Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, UK
| | - Mark Hassall
- National Institute for Biological Standards and Control, Hertfordshire, UK
| | - Giada Mattiuzzo
- National Institute for Biological Standards and Control, Hertfordshire, UK
| | | | - Andrea Nans
- Structural Biology Science Technology Platform, Francis Crick Institute, London, UK
| | - Yasuhiro Takeuchi
- National Institute for Biological Standards and Control, Hertfordshire, UK
- UCL Division of Infection and Immunity, The Rayne Building, London, UK
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, Oxford, UK
- School of Life Sciences & Department of Chemistry, University of Warwick, Warwick, UK
| | - J Mark Skehel
- Biological Mass Spectrometry and Proteomics Laboratory, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, UK
| | - Massimo Pizzato
- Department of Cellular, Computational and Integrative Biology, University of Trento, Povo, Italy.
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, Francis Crick Institute, London, UK.
- Department of Infectious Disease, Imperial College London, St Mary's Campus, Norfolk Place, London, UK.
| |
Collapse
|
9
|
Chen X, Liu S, Jiang S, Zhang X, Zhang N, Ma J, Ge H. Crystal structure of a hypothetical T2SS effector Lpg0189 from Legionella pneumophila reveals a novel protein fold. Biochem Biophys Res Commun 2019; 521:799-805. [PMID: 31706575 DOI: 10.1016/j.bbrc.2019.10.195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 11/30/2022]
Abstract
Lpg0189 is a type II secretion system-dependent extracellular protein with unknown function from Legionella pneumophila. Herein, we determined the crystal structure of Lpg0189 at 1.98 Å resolution by using single-wavelength anomalous diffraction (SAD). Lpg0189 folds into a novel chair-shaped architecture, with two sheets roughly perpendicular to each other. Bioinformatics analysis suggests Lpg0189 and its homologues are unique to Legionellales and evolved divergently. The interlinking structural and bioinformatics studies provide a better understanding of this hypothetical protein.
Collapse
Affiliation(s)
- Xiaofang Chen
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China; School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui, 230601, China
| | - Shan Liu
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China
| | - Sha Jiang
- Life Sciences, Anhui University, Hefei, Anhui, 230601, China
| | - Xuecheng Zhang
- Life Sciences, Anhui University, Hefei, Anhui, 230601, China
| | - Nannan Zhang
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China; Life Sciences, Anhui University, Hefei, Anhui, 230601, China.
| | - Jinming Ma
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China; Life Sciences, Anhui University, Hefei, Anhui, 230601, China.
| | - Honghua Ge
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China; Life Sciences, Anhui University, Hefei, Anhui, 230601, China.
| |
Collapse
|
10
|
Schlachter CR, Daneshian L, Amaya J, Klapper V, Wybouw N, Borowski T, Van Leeuwen T, Grbic V, Grbic M, Makris TM, Chruszcz M. Structural and functional characterization of an intradiol ring-cleavage dioxygenase from the polyphagous spider mite herbivore Tetranychus urticae Koch. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 107:19-30. [PMID: 30529144 PMCID: PMC6768081 DOI: 10.1016/j.ibmb.2018.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/20/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Genome analyses of the polyphagous spider mite herbivore Tetranychus urticae (two-spotted spider mite) revealed the presence of a set of 17 genes that code for secreted proteins belonging to the "intradiol dioxygenase-like" subgroup. Phylogenetic analyses indicate that this novel enzyme family has been acquired by horizontal gene transfer. In order to better understand the role of these proteins in T. urticae, we have structurally and functionally characterized one paralog (tetur07g02040). It was demonstrated that this protein is indeed an intradiol ring-cleavage dioxygenase, as the enzyme is able to cleave catechol between two hydroxyl-groups using atmospheric dioxygen. The enzyme was characterized functionally and structurally. The active site of the T. urticae enzyme contains an Fe3+ cofactor that is coordinated by two histidine and two tyrosine residues, an arrangement that is similar to those observed in bacterial homologs. However, the active site is significantly more solvent exposed than in bacterial proteins. Moreover, the mite enzyme is monomeric, while almost all structurally characterized bacterial homologs form oligomeric assemblies. Tetur07g02040 is not only the first spider mite dioxygenase that has been characterized at the molecular level, but is also the first structurally characterized intradiol ring-cleavage dioxygenase originating from a eukaryote.
Collapse
Affiliation(s)
- Caleb R Schlachter
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Leily Daneshian
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Jose Amaya
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Vincent Klapper
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Nicky Wybouw
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands; Department of Plants and Crops, Ghent University, Ghent, B-9000, Belgium
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239, Krakow, Poland
| | - Thomas Van Leeuwen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands; Department of Plants and Crops, Ghent University, Ghent, B-9000, Belgium
| | - Vojislava Grbic
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada; University of La Rioja, Logrono, Spain
| | - Miodrag Grbic
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada; University of La Rioja, Logrono, Spain
| | - Thomas M Makris
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
11
|
Raza S, Siddique K, Rabbani M, Yaqub T, Anjum AA, Ibrahim M, Azhar M, Jamil F, Rasheed MA. In silico analysis of four structural proteins of aphthovirus serotypes revealed significant B and T cell epitopes. Microb Pathog 2019; 128:254-262. [DOI: 10.1016/j.micpath.2019.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/01/2019] [Accepted: 01/04/2019] [Indexed: 12/20/2022]
|
12
|
Wu J, Yin Q, Zhang C, Geng J, Wu H, Hu H, Ke X, Zhang Y. Function Prediction for G Protein-Coupled Receptors through Text Mining and Induction Matrix Completion. ACS OMEGA 2019; 4:3045-3054. [PMID: 31459527 PMCID: PMC6649004 DOI: 10.1021/acsomega.8b02454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/11/2019] [Indexed: 06/10/2023]
Abstract
G protein-coupled receptors (GPCRs) constitute the key component of cellular signal transduction. Accurately annotating the biological functions of GPCR proteins is vital to the understanding of the physiological processes they involve in. With the rapid development of text mining technologies and the exponential growth of biomedical literature, it becomes urgent to explore biological functional information from various literature for systematically and reliably annotating these known GPCRs. We design a novel three-stage approach, TM-IMC, using text mining and inductive matrix completion, for automated prediction of the gene ontology (GO) terms of the GPCR proteins. Large-scale benchmark tests show that inductive matrix completion models contribute to GPCR-GO association prediction for both molecular function and biological process aspects. Moreover, our detailed data analysis shows that information extracted from GPCR-associated literature indeed contributes to the prediction of GPCR-GO associations. The study demonstrated a new avenue to enhance the accuracy of GPCR function annotation through the combination of text mining and induction matrix completion over baseline methods in critical assessment of protein function annotation algorithms and literature-based GO annotation methods. Source codes of TM-IMC and the involved datasets can be freely downloaded from https://zhanglab.ccmb.med.umich.edu/TM-IMC for academic purposes.
Collapse
Affiliation(s)
- Jiansheng Wu
- School
of Geographic and Biological Information and School of Telecommunication and
Information Engineering, Nanjing University
of Posts and Telecommunications, Nanjing 210023, China
| | - Qin Yin
- School
of Geographic and Biological Information and School of Telecommunication and
Information Engineering, Nanjing University
of Posts and Telecommunications, Nanjing 210023, China
| | - Chengxin Zhang
- Department of Computational Medicine
and Bioinformatics and Department of Biological
Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jingjing Geng
- School
of Geographic and Biological Information and School of Telecommunication and
Information Engineering, Nanjing University
of Posts and Telecommunications, Nanjing 210023, China
| | - Hongjie Wu
- School
of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Haifeng Hu
- School
of Geographic and Biological Information and School of Telecommunication and
Information Engineering, Nanjing University
of Posts and Telecommunications, Nanjing 210023, China
| | - Xiaoyan Ke
- Child
Mental Health Research Center, Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yang Zhang
- Department of Computational Medicine
and Bioinformatics and Department of Biological
Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Isaacs AT, Mawejje HD, Tomlinson S, Rigden DJ, Donnelly MJ. Genome-wide transcriptional analyses in Anopheles mosquitoes reveal an unexpected association between salivary gland gene expression and insecticide resistance. BMC Genomics 2018; 19:225. [PMID: 29587635 PMCID: PMC5870100 DOI: 10.1186/s12864-018-4605-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/14/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND To combat malaria transmission, the Ugandan government has embarked upon an ambitious programme of indoor residual spraying (IRS) with a carbamate class insecticide, bendiocarb. In preparation for this campaign, we characterized bendiocarb resistance and associated transcriptional variation among Anopheles gambiae s.s. mosquitoes from two sites in Uganda. RESULTS Gene expression in two mosquito populations displaying some resistance to bendiocarb (95% and 79% An. gambiae s.l. WHO tube bioassay mortality in Nagongera and Kihihi, respectively) was investigated using whole-genome microarrays. Significant overexpression of several genes encoding salivary gland proteins, including D7r2 and D7r4, was detected in mosquitoes from Nagongera. In Kihihi, D7r4, two detoxification-associated genes (Cyp6m2 and Gstd3) and an epithelial serine protease were among the genes most highly overexpressed in resistant mosquitoes. Following the first round of IRS in Nagongera, bendiocarb-resistant mosquitoes were collected, and real-time quantitative PCR analyses detected significant overexpression of D7r2 and D7r4 in resistant mosquitoes. A single nucleotide polymorphism located in a non-coding transcript downstream of the D7 genes was found at a significantly higher frequency in resistant individuals. In silico modelling of the interaction between D7r4 and bendiocarb demonstrated similarity between the insecticide and serotonin, a known ligand of D7 proteins. A meta-analysis of published microarray studies revealed a recurring association between D7 expression and insecticide resistance across Anopheles species and locations. CONCLUSIONS A whole-genome microarray approach identified an association between novel insecticide resistance candidates and bendiocarb resistance in Uganda. In addition, a single nucleotide polymorphism associated with this resistance mechanism was discovered. The use of such impartial screening methods allows for discovery of resistance candidates that have no previously-ascribed function in insecticide binding or detoxification. Characterizing these novel candidates will broaden our understanding of resistance mechanisms and yield new strategies for combatting widespread insecticide resistance among malaria vectors.
Collapse
Affiliation(s)
- Alison T Isaacs
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | | | - Sean Tomlinson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Daniel J Rigden
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.,Malaria Programme, Wellcome Trust Sanger Institute, Cambridge, UK
| |
Collapse
|
14
|
Asojo OA, Darwiche R, Gebremedhin S, Smant G, Lozano-Torres JL, Drurey C, Pollet J, Maizels RM, Schneiter R, Wilbers RHP. Heligmosomoides polygyrus Venom Allergen-like Protein-4 (HpVAL-4) is a sterol binding protein. Int J Parasitol 2018; 48:359-369. [PMID: 29505764 PMCID: PMC5893428 DOI: 10.1016/j.ijpara.2018.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/07/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022]
Abstract
Heligmosomoides polygyrus Venom Allergen-like Protein-4 (HpVAL-4) was produced in plants as a glycosylated protein. The crystal structure of HpVAL-4 was solved and reveals three distinct cavities. These cavities are the central cavity; the sterol-binding caveolin-binding motif (CBM); and the palmitate-binding cavity. The central cavity of Hp-VAL-4 lacks the characteristic histidines that coordinate divalent cations. Hp-VAL-4 binds sterol in vivo and in vitro.
Heligmosomoides polygyrus bakeri is a model parasitic hookworm used to study animal and human helminth diseases. During infection, the parasite releases excretory/secretory products that modulate the immune system of the host. The most abundant protein family in excretory/secretory products comprises the venom allergen-like proteins (VALs), which are members of the SCP/TAPS (sperm-coating protein/Tpx/antigen 5/pathogenesis related-1/Sc7) superfamily. There are >30 secreted Heligmosomoides polygyrus VAL proteins (HpVALs) and these proteins are characterised by having either one or two 15 kDa CAP (cysteine-rich secretory protein (CRISP)/antigen 5/pathogenesis related-1) domains. The first known HpVAL structure, HpVAL-4, refined to 1.9 Å is reported. HpVAL-4 was produced as a homogeneously glycosylated protein in leaves of Nicotiana benthamiana infiltrated with recombinant plasmids, making this plant expression platform amenable for the production of biological products. The overall topology of HpVAL-4 is a three layered αβα sandwich between a short N-terminal loop and a C-terminal cysteine rich extension. The C-terminal cysteine rich extension has two strands stabilized by two disulfide bonds and superposes well with the previously reported extension from the human hookworm Necator americanus Ancylostoma secreted protein-2 (Na-ASP-2). The N-terminal loop is connected to alpha helix 2 via a disulfide bond previously observed in Na-ASP-2. HpVAL-4 has a central cavity that is more similar to the N-terminal CAP domain of the two CAP Na-ASP-1 from Necator americanus. Unlike Na-ASP-2, mammalian CRISP, and the C-terminal CAP domain of Na-ASP-1, the large central cavity of HpVAL-4 lacks the two histidines required to coordinate divalent cations. HpVAL-4 has both palmitate-binding and sterol-binding cavities and is able to complement the in vivo sterol export phenotype of yeast mutants lacking their endogenous CAP proteins. More studies are required to determine endogenous binding partners of HpVAL-4 and unravel the possible impact of sterol binding on immune-modulatory functions.
Collapse
Affiliation(s)
- Oluwatoyin A Asojo
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Rabih Darwiche
- Division of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH 1700 Fribourg, Switzerland
| | - Selam Gebremedhin
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Geert Smant
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jose L Lozano-Torres
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Claire Drurey
- Wellcome Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Jeroen Pollet
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rick M Maizels
- Wellcome Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Roger Schneiter
- Division of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, CH 1700 Fribourg, Switzerland
| | - Ruud H P Wilbers
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
15
|
Luo Z, Kelleher AJ, Darwiche R, Hudspeth EM, Shittu OK, Krishnavajhala A, Schneiter R, Lopez JE, Asojo OA. Crystal Structure of Borrelia turicatae protein, BTA121, a differentially regulated gene in the tick-mammalian transmission cycle of relapsing fever spirochetes. Sci Rep 2017; 7:15310. [PMID: 29127407 PMCID: PMC5681642 DOI: 10.1038/s41598-017-14959-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/19/2017] [Indexed: 12/28/2022] Open
Abstract
Tick-borne relapsing fever (RF) borreliosis is a neglected disease that is often misdiagnosed. RF species circulating in the United States include Borrelia turicatae, which is transmitted by argasid ticks. Environmental adaptation by RF Borrelia is poorly understood, however our previous studies indicated differential regulation of B. turicatae genes localized on the 150 kb linear megaplasmid during the tick-mammalian transmission cycle, including bta121. This gene is up-regulated by B. turicatae in the tick versus the mammal, and the encoded protein (BTA121) is predicted to be surface localized. The structure of BTA121 was solved by single-wavelength anomalous dispersion (SAD) using selenomethionine-derivative protein. The topology of BTA121 is unique with four helical domains organized into two helical bundles. Due to the sequence similarity of several genes on the megaplasmid, BTA121 can serve as a model for their tertiary structures. BTA121 has large interconnected tunnels and cavities that can accommodate ligands, notably long parallel helices, which have a large hydrophobic central pocket. Preliminary in-vitro studies suggest that BTA121 binds lipids, notably palmitate with a similar order of binding affinity as tablysin-15, a known palmitate-binding protein. The reported data will guide mechanistic studies to determine the role of BTA121 in the tick-mammalian transmission cycle of B. turicatae.
Collapse
Affiliation(s)
- Zhipu Luo
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, Illinois, 60439, USA
| | - Alan J Kelleher
- National School of Tropical Medicine, Baylor College of Medicine, Houston Texas, United States of America
| | - Rabih Darwiche
- Division of Biochemistry, Department of Biology, University of Fribourg Chemin du Musée 10, CH 1700, Fribourg, Switzerland
| | - Elissa M Hudspeth
- National School of Tropical Medicine, Baylor College of Medicine, Houston Texas, United States of America
| | - Oluwatosin K Shittu
- National School of Tropical Medicine, Baylor College of Medicine, Houston Texas, United States of America
| | - Aparna Krishnavajhala
- National School of Tropical Medicine, Baylor College of Medicine, Houston Texas, United States of America
| | - Roger Schneiter
- Division of Biochemistry, Department of Biology, University of Fribourg Chemin du Musée 10, CH 1700, Fribourg, Switzerland
| | - Job E Lopez
- National School of Tropical Medicine, Baylor College of Medicine, Houston Texas, United States of America.
| | - Oluwatoyin A Asojo
- National School of Tropical Medicine, Baylor College of Medicine, Houston Texas, United States of America.
| |
Collapse
|