1
|
Lotfi M, Morshedi Rad D, Mashhadi SS, Ashouri A, Mojarrad M, Mozaffari-Jovin S, Farrokhi S, Hashemi M, Lotfi M, Ebrahimi Warkiani M, Abbaszadegan MR. Recent Advances in CRISPR/Cas9 Delivery Approaches for Therapeutic Gene Editing of Stem Cells. Stem Cell Rev Rep 2023; 19:2576-2596. [PMID: 37723364 PMCID: PMC10661828 DOI: 10.1007/s12015-023-10585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 09/20/2023]
Abstract
Rapid advancement in genome editing technologies has provided new promises for treating neoplasia, cardiovascular, neurodegenerative, and monogenic disorders. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has emerged as a powerful gene editing tool offering advantages, including high editing efficiency and low cost over the conventional approaches. Human pluripotent stem cells (hPSCs), with their great proliferation and differentiation potential into different cell types, have been exploited in stem cell-based therapy. The potential of hPSCs and the capabilities of CRISPR/Cas9 genome editing has been paradigm-shifting in medical genetics for over two decades. Since hPSCs are categorized as hard-to-transfect cells, there is a critical demand to develop an appropriate and effective approach for CRISPR/Cas9 delivery into these cells. This review focuses on various strategies for CRISPR/Cas9 delivery in stem cells.
Collapse
Affiliation(s)
- Malihe Lotfi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dorsa Morshedi Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Samaneh Sharif Mashhadi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Ashouri
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Farrokhi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Lotfi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia.
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, Australia.
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Sato M, Takabayashi S, Akasaka E, Nakamura S. Recent Advances and Future Perspectives of In Vivo Targeted Delivery of Genome-Editing Reagents to Germ Cells, Embryos, and Fetuses in Mice. Cells 2020; 9:cells9040799. [PMID: 32225003 PMCID: PMC7226049 DOI: 10.3390/cells9040799] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 12/27/2022] Open
Abstract
The recently discovered clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) systems that occur in nature as microbial adaptive immune systems are considered an important tool in assessing the function of genes of interest in various biological systems. Thus, development of efficient and simple methods to produce genome-edited (GE) animals would accelerate research in this field. The CRISPR/Cas9 system was initially employed in early embryos, utilizing classical gene delivery methods such as microinjection or electroporation, which required ex vivo handling of zygotes before transfer to recipients. Recently, novel in vivo methods such as genome editing via oviductal nucleic acid delivery (GONAD), improved GONAD (i-GONAD), or transplacental gene delivery for acquiring genome-edited fetuses (TPGD-GEF), which facilitate easy embryo manipulation, have been established. Studies utilizing these techniques employed pregnant female mice for direct introduction of the genome-editing components into the oviduct or were dependent on delivery via tail-vein injection. In mice, embryogenesis occurs within the oviducts and the uterus, which often hampers the genetic manipulation of embryos, especially those at early postimplantation stages (days 6 to 8), owing to a thick surrounding layer of tissue called decidua. In this review, we have surveyed the recent achievements in the production of GE mice and have outlined the advantages and disadvantages of the process. We have also referred to the past achievements in gene delivery to early postimplantation stage embryos and germ cells such as primordial germ cells and spermatogonial stem cells, which will benefit relevant research.
Collapse
Affiliation(s)
- Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan;
- Correspondence: ; Tel.: +81-99-275-5246
| | - Shuji Takabayashi
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan;
| | - Eri Akasaka
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan;
| |
Collapse
|
3
|
Abstract
: Rare bleeding disorders usually begin in childhood and manifest as varying degrees of bleeding, which can be life-threatening in severe cases. With the development of gene editing technology, it is expected that hereditary coagulation factor disorders will someday be fundamentally cured by gene therapy. On account of their rarity, comprehension of these diseases is essential for the application of new treatment strategies. We have compiled the features of some newly discovered mutations of prothrombin, factor VII, and factor X in recent years. In addition, this review introduces the advances and obstacles in gene therapy.
Collapse
|
4
|
McFarlane GR, Salvesen HA, Sternberg A, Lillico SG. On-Farm Livestock Genome Editing Using Cutting Edge Reproductive Technologies. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00106] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
5
|
Song W, Shi X, Xia Q, Yuan M, Liu J, Hao K, Qian Y, Zhao X, Zou K. PLZF suppresses differentiation of mouse spermatogonial progenitor cells via binding of differentiation associated genes. J Cell Physiol 2019; 235:3033-3042. [PMID: 31541472 DOI: 10.1002/jcp.29208] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/03/2019] [Indexed: 11/06/2022]
Abstract
Promyelocytic leukaemia zinc finger (PLZF) is a key factor in inhibiting differentiation of spermatogonial progenitor cells (SPCs), but the underlying mechanisms are still largely unknown. In this study, the regulation of PLZF on Kit, Stra8, Sohlh2, and Dmrt1 (SPCs differentiation related genes) was investigated. We found some PLZF potential binding sites existed in the promoters of Kit, Stra8, Sohlh2, and Dmrt1. Additionally, the expressions of KIT, STRA8, SOHLH2, and DMRT1 were upregulated when PLZF was knockdown in SPCs. Furthermore, chromatin immunoprecipitation quantitative polymerase chain reaction revealed PLZF directly bound to the promoters of Kit, Stra8, Sohlh2, and Dmrt1. Besides, dual luciferase assay verified PLZF repressed those gene expressions. Collectively, our finding indicate that PLZF binds to the promoter regions of Kit, Stra8, Sohlh2, and Dmrt1 to regulate SPCs differentiation, which facilitate us to further understand the regulatory mechanism of PLZF in SPCs fates.
Collapse
Affiliation(s)
- Weixiang Song
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xinglong Shi
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Xia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Min Yuan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiaxi Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kunying Hao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yinjuan Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaodong Zhao
- Shanghai Center for Systems Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kang Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Liu F, Liu X, Liu X, Li T, Zhu P, Liu Z, Xue H, Wang W, Yang X, Liu J, Han W. Integrated Analyses of Phenotype and Quantitative Proteome of CMTM4 Deficient Mice Reveal Its Association with Male Fertility. Mol Cell Proteomics 2019; 18:1070-1084. [PMID: 30867229 PMCID: PMC6553932 DOI: 10.1074/mcp.ra119.001416] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 12/13/2022] Open
Abstract
The chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family (CMTM) is a gene family that has been implicated in male reproduction. CMTM4 is an evolutionarily conserved member that is highly expressed in the testis. However, its function in male fertility remains unknown. Here, we demonstrate that CMTM4 is associated with spermatogenesis and sperm quality. Using Western blotting and immunohistochemical analyses, we found CMTM4 expression to be decreased in poor-quality human spermatozoa, old human testes, and testicular biopsies with nonobstructive azoospermia. Using CRISPR-Cas9 technology, we knocked out the Cmtm4 gene in mice. These Cmtm4 knockout (KO) mice showed reduced testicular daily sperm production, lower epididymal sperm motility and increased proportion of abnormally backward-curved sperm heads and bent sperm midpieces. These mice also had an evident sub-fertile phenotype, characterized by low pregnancy rates on prolonged breeding with wild type female mice, reduced in vitro fertilization efficiency and a reduced percentage of acrosome reactions. We then performed quantitative proteomic analysis of the testes, where we identified 139 proteins to be downregulated in Cmtm4-KO mice, 100 (71.9%) of which were related to sperm motility and acrosome reaction. The same proteomic analysis was performed on sperm, where we identified 3588 proteins with 409 being differentially regulated in Cmtm4-KO mice. Our enrichment analysis showed that upregulated proteins were enriched with nucleosomal DNA binding functions and the downregulated proteins were enriched with actin binding functions. These findings elucidate the roles of CMTM4 in male fertility and demonstrates its potential as a promising molecular candidate for sperm quality assessment and the diagnosis or treatment of male infertility.
Collapse
Affiliation(s)
- FuJun Liu
- From the ‡Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - XueXia Liu
- §Department of Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China
- ¶Shandong Research Centre for Stem Cell Engineering, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China
| | - Xin Liu
- §Department of Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China
- ¶Shandong Research Centre for Stem Cell Engineering, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China
| | - Ting Li
- From the ‡Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Peng Zhu
- §Department of Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China
- ¶Shandong Research Centre for Stem Cell Engineering, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China
| | - ZhengYang Liu
- From the ‡Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Hui Xue
- From the ‡Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - WenJuan Wang
- ‖Reproduction Medical Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, P.R. China
| | - XiuLan Yang
- From the ‡Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Juan Liu
- §Department of Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China
- ¶Shandong Research Centre for Stem Cell Engineering, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, 264000, China
| | - WenLing Han
- From the ‡Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Center for Human Disease Genomics, Beijing, 100191, China;
| |
Collapse
|
7
|
Pereira CD, Serrano JB, Martins F, da Cruz E Silva OAB, Rebelo S. Nuclear envelope dynamics during mammalian spermatogenesis: new insights on male fertility. Biol Rev Camb Philos Soc 2019; 94:1195-1219. [PMID: 30701647 DOI: 10.1111/brv.12498] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 02/06/2023]
Abstract
The production of highly specialized spermatozoa from undifferentiated spermatogonia is a strictly organized and programmed process requiring extensive restructuring of the entire cell. One of the most remarkable cellular transformations accompanying the various phases of spermatogenesis is the profound remodelling of the nuclear architecture, in which the nuclear envelope (NE) seems to be crucially involved. In recent years, several proteins from the distinct layers forming the NE (i.e. the inner and outer nuclear membranes as well as the nuclear lamina) have been associated with meiosis and/or spermiogenesis in different mammalian species. Among these are A- and B-type lamins, Dpy-19-like protein 2 (DPY19L2), lamin B receptor (LBR), lamina-associated polypeptide 1 (LAP1), LAP2/emerin/MAN1 (LEM) domain-containing proteins, spermatogenesis-associated 46 (SPATA46) and diverse elements of the linker of nucleoskeleton and cytoskeleton (LINC) complex, namely Sad-1/UNC-84 homology (SUN) and Klarsicht/ANC-1/Syne-1 homology (KASH) domain-containing proteins. Herein, we summarize the current state of the art on the cellular and subcellular distribution of NE proteins expressed during mammalian spermatogenesis, and discuss the latest research developments regarding their testis-specific functions. This review provides a comprehensive and innovative overview of the NE network as a regulatory platform and as an essential determinant of efficient meiotic chromosome recombination as well as spermiogenesis-associated nuclear remodelling and differentiation in mammalian male germline cells. Thus, this review provides important novel insights on the biological relevance of NE proteins for male fertility.
Collapse
Affiliation(s)
- Cátia D Pereira
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana B Serrano
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipa Martins
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Odete A B da Cruz E Silva
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal.,The Discovery CTR, University of Aveiro Campus, 3810-193 Aveiro, Portugal
| | - Sandra Rebelo
- Department of Medical Sciences, Neuroscience and Signalling Laboratory, Institute for Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|