1
|
Nguyen DC, Wells CK, Taylor MS, Martinez-Ondaro Y, Singhal R, Brittian KR, Brainard RE, Moore JB, Hill BG. Dietary Branched-Chain Amino Acids Modify Postinfarct Cardiac Remodeling and Function in the Murine Heart. J Am Heart Assoc 2025; 14:e037637. [PMID: 39950451 DOI: 10.1161/jaha.124.037637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/06/2025] [Indexed: 02/19/2025]
Abstract
BACKGROUND Branched-chain amino acids (BCAAs), which are derived from the diet, are markedly elevated in cardiac tissue following myocardial infarction (MI). Nevertheless, it remains unclear whether dietary BCAA levels influence post-MI remodeling. METHODS To investigate the impact of dietary BCAAs on cardiac remodeling and function after MI, we fed mice a low or a high BCAA diet for 2 weeks before MI and for 4 weeks after MI. Cardiac structural and functional changes were evaluated by echocardiography, gravimetry, and histopathological analyses. Immunoblotting was used to evaluate the effects of BCAAs on isolated cardiac myofibroblast differentiation. RESULTS The low BCAA diet decreased circulating BCAA concentrations by >2-fold when compared with the high BCAA diet. Although neither body weights nor heart masses were different in female mice fed the custom diets, male mice fed the high BCAA diet had significantly higher body and heart masses than those on the low BCAA diet. The low BCAA diet preserved stroke volume and cardiac output after MI, whereas the high BCAA diet promoted progressive decreases in cardiac function. Although BCAAs were required for myofibroblast differentiation in vitro, cardiac fibrosis, scar collagen topography, and cardiomyocyte cross-sectional area were not different between the dietary groups; however, male mice fed the high BCAA diet had longer cardiomyocytes and higher capillary density compared with the low BCAA group. CONCLUSIONS A low BCAA diet mitigates eccentric cardiomyocyte remodeling and loss of cardiac function after MI in mice, with dietary effects more prominent in males.
Collapse
Affiliation(s)
- Daniel C Nguyen
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine University of Louisville Louisville KY USA
- Department of Physiology University of Louisville Louisville KY USA
| | - Collin K Wells
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine University of Louisville Louisville KY USA
| | - Madison S Taylor
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine University of Louisville Louisville KY USA
| | - Yania Martinez-Ondaro
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine University of Louisville Louisville KY USA
| | - Richa Singhal
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine University of Louisville Louisville KY USA
| | - Kenneth R Brittian
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine University of Louisville Louisville KY USA
| | | | - Joseph B Moore
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine University of Louisville Louisville KY USA
| | - Bradford G Hill
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine University of Louisville Louisville KY USA
| |
Collapse
|
2
|
Yang H, Xu Y, Cheong S, Xie C, Zhu Y, Xu S, Lu F, He Y. Mobilization of subcutaneous fascia contributes to the vascularization and function of acellular adipose matrix via formation of vascular matrix complex. Mater Today Bio 2025; 30:101461. [PMID: 39866780 PMCID: PMC11764388 DOI: 10.1016/j.mtbio.2025.101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/11/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025] Open
Abstract
Regenerative biomaterials are commonly used for soft-tissue repair in both pre-clinical and clinical settings, but their effectiveness is often limited by poor regenerative outcomes and volume loss. Efficient vascularization is crucial for the long-term survival and function of these biomaterials in vivo. Despite numerous pro-vascularization strategies developed over the past decades, the fundamental mechanisms of vascularization in regenerative biomaterials remain largely unexplored. In this study, we employed matrix-tracing, vessel-tracing, cell-tracing, and matrix analysis techniques, etc. to investigate the vascularization process of acellular adipose matrix (AAM) implants in a murine model. Here, we show that the mobilization of subcutaneous fascia contributes to the vascularization in AAM implants. Tracing techniques revealed that the subcutaneous fascia migrates to encase the AAM implants, bringing along fascia-embedded blood vessels, thus forming a vascular matrix complex (VMC) on the implant surface. Restricting fascia mobilization or removing fascia tissue significantly reduced AAM vascularization and hindered the regenerative process, leading to implant collapse at a later stage. Notably, VMC exhibited a dynamic matrix remodeling process closely aligned with implant vascularization. Our findings highlight the crucial role of subcutaneous fascia mobility in facilitating the vascularization of AAM implants, offering a novel direction and target for guaranteeing long-term survival and function of regenerative biomaterials in vivo.
Collapse
Affiliation(s)
- Han Yang
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Yidan Xu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Sousan Cheong
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Cuiying Xie
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Yufan Zhu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Shujie Xu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Feng Lu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Yunfan He
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| |
Collapse
|
3
|
Hossain AS, Clarin MTRDC, Kimura K, Biggin G, Taga Y, Uto K, Yamagishi A, Motoyama E, Narenmandula, Mizuno K, Nakamura C, Asano K, Ohtsuki S, Nakamura T, Kanki S, Baldock C, Raja E, Yanagisawa H. Fibrillin-1 G234D mutation in the hybrid1 domain causes tight skin associated with dysregulated elastogenesis and increased collagen cross-linking in mice. Matrix Biol 2025; 135:24-38. [PMID: 39615636 PMCID: PMC11747857 DOI: 10.1016/j.matbio.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/30/2025]
Abstract
Fibrillin-1, an extracellular matrix (ECM) protein encoded by the FBN1 gene, serves as a microfibril scaffold crucial for elastic fiber formation and homeostasis in pliable tissue such as the skin. Aside from causing Marfan syndrome, some mutations in FBN1 result in scleroderma, marked by hardened and thicker skin which limits joint mobility. Here, we describe a tight skin phenotype in the Fbn1G234D/G234D mice carrying a corresponding variant of FBN1 in the hybrid1 domain that was identified in a patient with familial aortic dissection. Unlike scleroderma, skin thickness and collagen fiber abundance do not change in the Fbn1G234D/G234D mutant skin. Instead, increased collagen cross-links were observed. In addition, short elastic fibers were sparsely located underneath the panniculus muscle layer, and an abundance of thin, aberrant elastic fibers was increased within the subcutaneous fascia, which may have tightened skin attachment to the underlying skeletal muscle. Structurally, Fbn1G234D/G234D microfibrils have a disrupted shoulder region that shares similarities with hybrid1 deletion mutant microfibrils. We then demonstrate the consequence of fibrillin-1 G234D mutation on dermal fibroblast functions. Mutant primary fibroblasts produce fewer elastic fibers, exhibit slower migration and increased cell stiffness. Moreover, secretome from mutant fibroblasts are marked by enhanced secretion of ECM, ECM-modifying enzymes, proteoglycans and cytokines, which are pro-tissue repair/fibrogenic. The transcriptome of mutant fibroblasts displays an increased expression of myogenic developmental and immune-related genes. Our study proposes that imbalanced ECM homeostasis due to a fibrillin-1 G234D mutation impacts fibroblast properties with potential ramifications on skin function.
Collapse
Affiliation(s)
- Asm Sakhawat Hossain
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan; Tsukuba Advanced Research Alliance (TARA), Life Science Center for Survival Dynamics, University of Tsukuba, Japan; Department of Pharmacy, Varendra University, Bangladesh
| | - Maria Thea Rane Dela Cruz Clarin
- School of Integrative and Global Major, University of Tsukuba, Japan; Tsukuba Advanced Research Alliance (TARA), Life Science Center for Survival Dynamics, University of Tsukuba, Japan; National Institute for Material Science, Japan
| | - Kenichi Kimura
- Tsukuba Advanced Research Alliance (TARA), Life Science Center for Survival Dynamics, University of Tsukuba, Japan
| | - George Biggin
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, UK
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Japan
| | | | - Ayana Yamagishi
- National Institute of Advanced Industrial Science and Technology, Japan
| | - Eri Motoyama
- Tsukuba Advanced Research Alliance (TARA), Life Science Center for Survival Dynamics, University of Tsukuba, Japan
| | - Narenmandula
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan; Tsukuba Advanced Research Alliance (TARA), Life Science Center for Survival Dynamics, University of Tsukuba, Japan
| | | | - Chikashi Nakamura
- National Institute of Advanced Industrial Science and Technology, Japan
| | - Keiichi Asano
- Tsukuba Advanced Research Alliance (TARA), Life Science Center for Survival Dynamics, University of Tsukuba, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Japan
| | | | - Sachiko Kanki
- Department of Surgery, Osaka Medical and Pharmaceutical University, Japan
| | - Clair Baldock
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, UK
| | - Erna Raja
- Tsukuba Advanced Research Alliance (TARA), Life Science Center for Survival Dynamics, University of Tsukuba, Japan.
| | - Hiromi Yanagisawa
- Tsukuba Advanced Research Alliance (TARA), Life Science Center for Survival Dynamics, University of Tsukuba, Japan.
| |
Collapse
|
4
|
Gionet-Gonzales M, Gathman G, Rosas J, Kunisaki KY, Inocencio DGP, Hakami N, Milburn GN, Pitenis AA, Campbell KS, Pruitt BL, Stowers RS. Stress relaxation rates of myocardium from failing and non-failing hearts. Biomech Model Mechanobiol 2025; 24:265-280. [PMID: 39741200 PMCID: PMC11846740 DOI: 10.1007/s10237-024-01909-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/06/2024] [Indexed: 01/02/2025]
Abstract
The heart is a dynamic pump whose function is influenced by its mechanical properties. The viscoelastic properties of the heart, i.e., its ability to exhibit both elastic and viscous characteristics upon deformation, influence cardiac function. Viscoelastic properties change during heart failure (HF), but direct measurements of failing and non-failing myocardial tissue stress relaxation under constant displacement are lacking. Further, how consequences of tissue remodeling, such as fibrosis and fat accumulation, alter the stress relaxation remains unknown. To address this gap, we conducted stress relaxation tests on porcine myocardial tissue to establish baseline properties of cardiac tissue. We found porcine myocardial tissue to be fast relaxing, characterized by stress relaxation tests on both a rheometer and microindenter. We then measured human left ventricle (LV) epicardium and endocardium tissue from non-failing, ischemic HF and non-ischemic HF patients by microindentation. Analyzing by patient groups, we found that ischemic HF samples had slower stress relaxation than non-failing endocardium. Categorizing the data by stress relaxation times, we found that slower stress relaxing tissues were correlated with increased collagen deposition and increased α-smooth muscle actin (α-SMA) stress fibers, a marker of fibrosis and cardiac fibroblast activation, respectively. In the epicardium, analyzing by patient groups, we found that ischemic HF had faster stress relaxation than non-ischemic HF and non-failing. When categorizing by stress relaxation times, we found that faster stress relaxation correlated with Oil Red O staining, a marker for adipose tissue. These data show that changes in stress relaxation vary across the different layers of the heart during ischemic versus non-ischemic HF. These findings reveal how the viscoelasticity of the heart changes, which will lead to better modeling of cardiac mechanics for in vitro and in silico HF models.
Collapse
Affiliation(s)
- Marissa Gionet-Gonzales
- Bioengineering, University of California, Santa Barbara, Santa Barbara, United States
- Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, United States
| | - Gianna Gathman
- Bioengineering, University of California, Santa Barbara, Santa Barbara, United States
| | - Jonah Rosas
- Materials, University of California, Santa Barbara, Santa Barbara, United States
| | - Kyle Y Kunisaki
- Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, United States
| | | | - Niki Hakami
- Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, United States
| | | | - Angela A Pitenis
- Materials, University of California, Santa Barbara, Santa Barbara, United States
| | | | - Beth L Pruitt
- Bioengineering, University of California, Santa Barbara, Santa Barbara, United States.
- Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, United States.
| | - Ryan S Stowers
- Bioengineering, University of California, Santa Barbara, Santa Barbara, United States.
- Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, United States.
| |
Collapse
|
5
|
Teitz-Tennenbaum S, Marinetti KN, Lahiri S, Siddiqui K, Flory C, Tennenbaum K, Hicks HG, Song B, Ganguly A, Osterholzer JJ. Sulfur dioxide exposure of mice induces peribronchiolar fibrosis-A defining feature of deployment-related constrictive bronchiolitis. PLoS One 2025; 20:e0313992. [PMID: 39854594 PMCID: PMC11761160 DOI: 10.1371/journal.pone.0313992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/01/2024] [Indexed: 01/26/2025] Open
Abstract
Deployment-related constrictive bronchiolitis (DRCB) has emerged as a health concern in military personnel returning from Southwest Asia. Exposure to smoke from a fire at the Al-Mishraq sulfur enrichment facility and/or burn pits was reported by a subset of Veterans diagnosed with this disorder. DRCB is characterized by thickening and fibrosis of small airways (SA) in the lung, but whether these are related to toxin inhalation remains uncertain. The aim of this study was to determine whether sulfur dioxide (SO2) exposure can induce histopathological features of DRCB. C57BL/6J mice were exposed to 50 ± 5 ppm SO2 for one hour/day for five consecutive days. Lungs from exposed and unexposed mice were evaluated on day 5, 10, and 20. Lung sections were stained using hematoxylin and eosin, Masson's trichrome, picrosirius red (PSR), and immunofluorescence for club cell secretory protein, acetylated-α-tubulin, and Ki67. Small airway wall thickness was determined by morphometric analysis and collagen content was quantified by measuring PSR fluorescence intensity. CurveAlign and CT-FIRE were used to enumerate collagen fibers and assess fibers' width and length, respectively. Leukocyte subpopulations were quantified by flow cytometry analysis. This protocol of SO2 exposure of mice: 1) Triggered club cell proliferation and differentiation; 2) Increased SA wall thickness by inducing subepithelial collagen deposition; and 3) Increased width, length, and number, but not density, of collagen fibers within the wall of SA. 4) Induced no peribronchiolar inflammation or respiratory bronchiolitis. Collectively, these findings implicate club cell proliferation and differentiation in the profibrotic response to SO2 and identify this SO2 exposure as a potentially effective though imperfect model for studying SA fibrosis in DRCB.
Collapse
Affiliation(s)
- Seagal Teitz-Tennenbaum
- Research Service and Pulmonary Section Medical Service, Veterans Affairs Ann Arbor Health System, Ann Arbor, Michigan, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kayla N. Marinetti
- Research Service and Pulmonary Section Medical Service, Veterans Affairs Ann Arbor Health System, Ann Arbor, Michigan, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Shayanki Lahiri
- Research Service and Pulmonary Section Medical Service, Veterans Affairs Ann Arbor Health System, Ann Arbor, Michigan, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Khadijah Siddiqui
- Research Service and Pulmonary Section Medical Service, Veterans Affairs Ann Arbor Health System, Ann Arbor, Michigan, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Celia Flory
- Research Service and Pulmonary Section Medical Service, Veterans Affairs Ann Arbor Health System, Ann Arbor, Michigan, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Karinne Tennenbaum
- Research Service and Pulmonary Section Medical Service, Veterans Affairs Ann Arbor Health System, Ann Arbor, Michigan, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Helen G. Hicks
- Research Service and Pulmonary Section Medical Service, Veterans Affairs Ann Arbor Health System, Ann Arbor, Michigan, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Brian Song
- Research Service and Pulmonary Section Medical Service, Veterans Affairs Ann Arbor Health System, Ann Arbor, Michigan, United States of America
| | - Anutosh Ganguly
- Research Service and Pulmonary Section Medical Service, Veterans Affairs Ann Arbor Health System, Ann Arbor, Michigan, United States of America
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - John J. Osterholzer
- Research Service and Pulmonary Section Medical Service, Veterans Affairs Ann Arbor Health System, Ann Arbor, Michigan, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
6
|
Ishizaki T, Uto Y, Inaba N, Tsuda F, Kuroshima S, Sawase T. Effects of thread design on soft and hard tissue healing around implants in lipopolysaccharide-induced peri-implantitis-like lesions in rat maxillae. J Oral Biosci 2025:100620. [PMID: 39863249 DOI: 10.1016/j.job.2025.100620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
OBJECTIVES This study investigated the effects of thread design on the soft and hard tissues around implants in rat maxillary peri-implantitis-like lesions. METHODS Fourteen, 9-week-old, female Wistar rats were used in this study. Two types of grade IV titanium tissue-level implants with a standard V-shape and buttress threads were prepared (control and test implants, respectively). The control and test implants were randomly placed into healed left or right sides four weeks after first molar extraction. Daily administration of lipopolysaccharide (LPS) into the peri-implant mucosal sulcus was performed in combination with Freund's incomplete and complete adjuvants. The maxillae were harvested 16 days after LPS administration for quantitative and qualitative analyses. RESULTS LPS administration induced significant marginal bone loss, with increases in osteoclasts and polymorphonuclear cells around control implants. LPS administration did not change cell numbers around t nor alter bone quality inside the buttress threads of the test implants, but resulted in a significant deterioration of bone quality, defined as the preferential alignment of collagen fibers inside the V-shaped threads of the control implant. LPS administration also significantly increased calprotectin production in the epithelium around the test implants and significantly increased calprotectin production in the connective tissue around both the control and test implants. CONCLUSIONS Buttress threads at specific angles provided resistance to LPS-induced inflammation in rats with LPS-induced peri-implantitis-like lesions. The upregulated production of calprotectin induced by LPS administration in the epithelium and connective tissues around the test implants may facilitate inflammation control around implants.
Collapse
Affiliation(s)
- Tomohiro Ishizaki
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Yusuke Uto
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Nao Inaba
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Fumika Tsuda
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Shinichiro Kuroshima
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; Department of Crown and Bridge Prosthodontics, Division of Oral Functional Science, Faculty of Dental Medicine, Hokkaido University, Sapporo 060-0813, Japan.
| | - Takashi Sawase
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan.
| |
Collapse
|
7
|
Li F, Wei Y, Li L, Chen F, Bao C, Bu H, Zhang Z. Collagen Density Is Associated With Pathological Complete Response to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer Patients. J Surg Oncol 2024. [PMID: 39699940 DOI: 10.1002/jso.28046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND AND OBJECTIVES The tumor-associated stroma is an essential compartment in breast cancer, and collagen fiber organization in the stroma has been reported to be correlated with prognosis. In this study, we sought to evaluate collagen fiber characteristics in relation to pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) in breast cancer patients. METHODS A total of 388 breast cancer patients receiving NAC were enrolled. The stroma type was manually assessed on pretreatment hematoxylin and eosin (HE)-stained slides, and the collagen fiber features were quantified by a computer tool. The relationship between syndecan-1 expression and collagen fibers and its correlation with treatment efficacy were detected by immunohistochemistry. RESULTS The pCR rate of patients with collagen-dominant stroma was lower than that of patients with lymphocyte-dominant stroma (19.6% vs. 40.0%, p = 0.001). Patients who achieved pCR had straighter and less dense fibers in pretreatment biopsied tissue than non-pCR patients (p = 0.031, p = 0.044). Additionally, the pCR group had greater syndecans-1 expression on the tumor epithelium than the non-pCR group (p < 0.001), while there was no statistically significant difference in the stroma (p = 0.333). Collagen fiber density was the only factor associated with pCR after correction for other clinicopathological variables in triple-negative breast cancer (TNBC) patients (OR 0.466, 95% CI 0.227-0.956, p = 0.037); patients with lower fiber density had a greater pCR rate (37.5% vs. 12.5%, p = 0.021). CONCLUSIONS Collagen fiber density was associated with pCR in patients with breast cancer, and it could be a potential candidate for discriminating between responders and nonresponders for TNBC patients receiving NAC.
Collapse
Affiliation(s)
- Fengling Li
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yani Wei
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Chen
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Chunjuan Bao
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhang Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Elsangeedy E, Yamaleyeva DN, Edenhoffer NP, Deak A, Soloshenko A, Ray J, Sun X, Shaltout OH, Cruz-Diaz N, Westwood B, Kim-Shapiro D, Diz DI, Soker S, Pulgar VM, Ronca A, Willey JS, Yamaleyeva LM. Sex-specific cardiovascular adaptations to simulated microgravity in Sprague-Dawley rats. NPJ Microgravity 2024; 10:110. [PMID: 39702444 DOI: 10.1038/s41526-024-00450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024] Open
Abstract
Men and women have different cardiovascular responses to spaceflight; however, few studies have focused on direct comparisons between sexes. We investigated the mechanisms of aortic stiffening in socially and sexually mature 20-week-old male and female Sprague Dawley (SD) rats exposed to hindlimb unloading (HLU) for 14 days. Pulse wave velocity (PWV) was greater in the aortic arch of females after HLU versus control females (n = 6-8). HLU had no effect on aortic PWV in males (n = 5-6). Aortic α smooth muscle actin, myosin, collagen, elastin, and collagen-to-elastin ratio were not different in rats of either sex following HLU. The levels of G protein-coupled estrogen receptor (GPER) were lower in the aorta of SD females exposed to HLU compared with female controls but were not altered in males. HLU females also had lower aortic PPARγ, increased oxidative stress markers, and diastolic dysfunction compared with control females. GPER agonist G1 prevented the increase in PWV and 8-hydroxy-2'-deoxyguanosine without altering PPARγ or p47phox in HLU females (n = 4 in each group) suggesting that lower GPER may contribute to arterial stiffening in the setting of simulated microgravity. This study highlights sex-specific vascular adaptations to the state of simulated microgravity.
Collapse
Affiliation(s)
- Ebrahim Elsangeedy
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Dina N Yamaleyeva
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Nicholas P Edenhoffer
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Allyson Deak
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Anna Soloshenko
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jonathan Ray
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Xuming Sun
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Omar H Shaltout
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Nildris Cruz-Diaz
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Brian Westwood
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | - Debra I Diz
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Victor M Pulgar
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Pharmaceutical & Clinical Sciences, Campbell University, Buies Creek, NC, USA
| | - April Ronca
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Liliya M Yamaleyeva
- Department of Surgery, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
9
|
Efraim Y, Chen FYT, Niknezhad SV, Pham D, Cheong KN, An L, Sinada H, McNamara NA, Knox SM. Rebuilding the autoimmune-damaged corneal stroma through topical lubrication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.626078. [PMID: 39677756 PMCID: PMC11642755 DOI: 10.1101/2024.11.29.626078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Corneal lubrication is the most common treatment for relieving the signs and symptoms of dry eye and is considered to be largely palliative with no regenerative functions. Here we challenge this notion by demonstrating that wetting the desiccated cornea of an aqueous-deficient mouse model with the simplest form of lubrication, a saline-based solution, is sufficient to rescue the severely disrupted collagen-rich architecture of the stroma, the largest corneal compartment that is essential to transparency and vision. At the single cell level we show that stromal keratocytes responsible for maintaining stromal integrity are converted from an inflammatory state into unique reparative cell states by lubrication alone, thus revealing the extensive plasticity of these cells and the regenerative function of lubricating the surface. We further show that the generation of a reparative phenotype is due, in part, to disruption of an IL1β autocrine amplification loop promoting chronic inflammation. Thus, our study uncovers the regenerative potential of topical lubrication in dry eye and represents a paradigm shift in our understanding of its therapeutic impact.
Collapse
Affiliation(s)
- Yael Efraim
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco; San Francisco, CA 94143, USA
| | - Feeling Yu Ting Chen
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco; San Francisco, CA 94143, USA
| | - Seyyed Vahid Niknezhad
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco; San Francisco, CA 94143, USA
| | - Dylan Pham
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco; San Francisco, CA 94143, USA
| | - Ka Neng Cheong
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco; San Francisco, CA 94143, USA
| | - Luye An
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco; San Francisco, CA 94143, USA
| | - Hanan Sinada
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco; San Francisco, CA 94143, USA
| | - Nancy A. McNamara
- School of Optometry and Vision Science Graduate Program, University of California, Berkeley; Oakland, CA 94720, USA
- Department of Anatomy, University of California, San Francisco; San Francisco, CA 94143, USA
| | - Sarah M. Knox
- Program in Craniofacial Biology, Department of Cell & Tissue Biology, University of California San Francisco; San Francisco, CA 94143, USA
| |
Collapse
|
10
|
Wyetzner RH, Segal EX, Jussila AR, Atit RP. Topographical changes in extracellular matrix during skin fibrosis and recovery can be evaluated using automated image analysis algorithms. FEBS Lett 2024; 598:2995-3004. [PMID: 39054263 PMCID: PMC11665952 DOI: 10.1002/1873-3468.14987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/19/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Skin fibrosis is characterized by fibroblast activation and intradermal fat loss, resulting in excess deposition and remodeling of dermal extracellular matrix (ECM). The topography of the dominant ECM proteins, such as collagens, can indicate skin stiffness and remains understudied in evaluating fibrotic skin. Here, we adapted two different unbiased image analysis algorithms to define collagen topography and alignment in a genetically inducible and reversible Wnt activation fibrosis model. We demonstrated that Wnt-activated fibrotic skin has altered collagen fiber characteristics and a loss of collagen alignment, which were restored in the reversible model. This study highlights how unbiased algorithms can be used to analyze ECM topography, providing novel avenues to evaluate fibrotic skin onset, recovery, and treatment.
Collapse
Affiliation(s)
| | - Ella X. Segal
- Department of BiologyCase Western Reserve UniversityClevelandOHUSA
| | - Anna R. Jussila
- Department of BiologyCase Western Reserve UniversityClevelandOHUSA
| | - Radhika P. Atit
- Department of BiologyCase Western Reserve UniversityClevelandOHUSA
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOHUSA
- Department of DermatologyCase Western Reserve UniversityClevelandOHUSA
| |
Collapse
|
11
|
Balsini P, Weinzettl P, Samardzic D, Zila N, Buchberger M, Freystätter C, Tschandl P, Wielscher M, Weninger W, Pfisterer K. Stiffness-Dependent Lysyl Oxidase Regulation through Hypoxia-Inducing Factor 1 Drives Extracellular Matrix Modifications in Psoriasis. J Invest Dermatol 2024:S0022-202X(24)02958-0. [PMID: 39603411 DOI: 10.1016/j.jid.2024.10.611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/09/2024] [Accepted: 10/09/2024] [Indexed: 11/29/2024]
Abstract
Psoriasis is a common chronic inflammatory skin disease characterized by a thickened epidermis with elongated rete ridges and massive immune cell infiltration. It is currently unclear what impact mechanoregulatory aspects may have on disease progression. Using multiphoton second harmonic generation microscopy, we found that the extracellular matrix was profoundly reorganized within psoriatic dermis. Collagen fibers were highly aligned and assembled into thick, long collagen bundles, whereas the overall fiber density was reduced. This was particularly pronounced within dermal papillae extending into the epidermis. Furthermore, the extracellular matrix-modifying enzyme lysyl oxidase was highly upregulated in the dermis of patients with psoriasis. In vitro experiments identified a previously unreported link between hypoxia-inducing factor 1 stabilization and lysyl oxidase protein regulation in mechanosensitive skin fibroblasts. Lysyl oxidase secretion and activity directly correlated with substrate stiffness and were independent of hypoxia and IL-17. Finally, single-cell RNA-sequencing analysis identified skin fibroblasts expressing high amounts of lysyl oxidase and confirmed elevated hypoxia-inducing factor 1 expression in psoriasis. Our findings suggest a potential yet undescribed mechanical aspect of psoriasis. Deregulated mechanical forces hence may be involved in initiating or maintaining of a positive feedback loop in fibroblasts and contribute to tissue stiffening and diminished skin elasticity in psoriasis, potentially exacerbating disease pathogenesis.
Collapse
Affiliation(s)
- Parvaneh Balsini
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Pauline Weinzettl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - David Samardzic
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Nina Zila
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Section Biomedical Science, University of Applied Sciences FH Campus Wien, Wien, Austria
| | - Maria Buchberger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christian Freystätter
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Philipp Tschandl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Matthias Wielscher
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Karin Pfisterer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Fischer AG, Elliott EM, Brittian KR, Garrett L, Sadri G, Aebersold J, Singhal RA, Nong Y, Leask A, Jones SP, Moore Iv JB. Matricellular protein CCN1 promotes collagen alignment and scar integrity after myocardial infarction. Matrix Biol 2024; 133:14-32. [PMID: 39098433 PMCID: PMC11476287 DOI: 10.1016/j.matbio.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Members of the cellular communication network family (CCN) of matricellular proteins, like CCN1, have long been implicated in the regulation of cellular processes underlying wound healing, tissue fibrogenesis, and collagen dynamics. While many studies suggest antifibrotic actions for CCN1 in the adult heart through the promotion of myofibroblast senescence, they largely relied on exogenous supplementation strategies in in vivo models of cardiac injury where its expression is already induced-which may confound interpretation of its function in this process. The objective of this study was to interrogate the role of the endogenous protein on fibroblast function, collagen structural dynamics, and its associated impact on cardiac fibrosis after myocardial infarction (MI). METHODS/RESULTS Here, we employed CCN1 loss-of-function methodologies, including both in vitro siRNA-mediated depletion and in vivo fibroblast-specific knockout mice to assess the role of the endogenous protein on cardiac fibroblast fibrotic signaling, and its involvement in acute scar formation after MI. In vitro depletion of CCN1 reduced cardiac fibroblast senescence and proliferation. Although depletion of CCN1 decreased the expression of collagen processing and stabilization enzymes (i.e., P4HA1, PLOD1, and PLOD2), it did not inhibit myofibroblast induction or type I collagen synthesis. Alone, fibroblast-specific removal of CCN1 did not negatively impact ventricular performance or myocardial collagen content but did contribute to disorganization of collagen fibrils and increased matrix compliance. Similarly, Ccn1 ablated animals subjected to MI showed no discernible alterations in cardiac structure or function one week after permanent coronary artery ligation, but exhibited marked increases in incidence of mortality and cardiac rupture. Consistent with our findings that CCN1 depletion does not assuage myofibroblast conversion or type I collagen synthesis in vitro, Ccn1 knockout animals revealed no measurable differences in collagen scar width or mass compared to controls; however, detailed structural analyses via SHG and TEM of scar regions revealed marked alterations in their scar collagen topography-exhibiting changes in numerous macro- and micro-level collagen architectural attributes. Specifically, Ccn1 knockout mice displayed heightened ECM structural complexity in post-MI scar regions, including diminished local alignment and heightened tortuosity of collagen fibers, as well as reduced organizational coherency, packing, and size of collagen fibrils. Associated with these changes in ECM topography with the loss of CCN1 were reductions in fibroblast-matrix interactions, as evidenced by reduced fibroblast nuclear and cellular deformation in vivo and reduced focal-adhesion formation in vitro; findings that ultimately suggest CCN1's ability to influence fibroblast-led collagen alignment may in part be credited to its capacity to augment fibroblast-matrix interactions. CONCLUSIONS These findings underscore the pivotal role of endogenous CCN1 in the scar formation process occurring after MI, directing the appropriate arrangement of the extracellular matrix's collagenous components in the maturing scar-shaping the mechanical properties that support its structural stability. While this suggests an adaptive role for CCN1 in regulating collagen structural attributes crucial for supporting scar integrity post MI, the long-term protracted expression of CCN1 holds maladaptive implications, potentially diminishing collagen structural complexity and compliance in non-infarct regions.
Collapse
Affiliation(s)
- Annalara G Fischer
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Erin M Elliott
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Kenneth R Brittian
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Lauren Garrett
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Ghazal Sadri
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Julia Aebersold
- Micro/Nano Technology Center, University of Louisville, Louisville, KY, USA
| | - Richa A Singhal
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Yibing Nong
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Steven P Jones
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA
| | - Joseph B Moore Iv
- Center for Cardiometabolic Science, University of Louisville School of Medicine, 580 South Preston Street, Delia Baxter Research Building, Room 304C, Louisville, KY 40202, USA.
| |
Collapse
|
13
|
Marzban S, Srivastava S, Kartika S, Bravo R, Safriel R, Zarski A, Anderson ARA, Chung CH, Amelio AL, West J. Spatial interactions modulate tumor growth and immune infiltration. NPJ Syst Biol Appl 2024; 10:106. [PMID: 39349537 PMCID: PMC11442770 DOI: 10.1038/s41540-024-00438-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/10/2024] [Indexed: 10/02/2024] Open
Abstract
Direct observation of tumor-immune interactions is unlikely in tumors with currently available technology, but computational simulations based on clinical data can provide insight to test hypotheses. It is hypothesized that patterns of collagen evolve as a mechanism of immune escape, but the exact nature of immune-collagen interactions is poorly understood. Spatial data quantifying collagen fiber alignment in squamous cell carcinomas indicates that late-stage disease is associated with highly aligned fibers. Our computational modeling framework discriminates between two hypotheses: immune cell migration that moves (1) parallel or (2) perpendicular to collagen fiber orientation. The modeling recapitulates immune-extracellular matrix interactions where collagen patterns provide immune protection, leading to an emergent inverse relationship between disease stage and immune coverage. Here, computational modeling provides important mechanistic insights by defining a kernel cell-cell interaction function that considers a spectrum of local (cell-scale) to global (tumor-scale) spatial interactions. Short-range interaction kernels provide a mechanism for tumor cell survival under conditions with strong Allee effects, while asymmetric tumor-immune interaction kernels lead to poor immune response. Thus, the length scale of tumor-immune interaction kernels drives tumor growth and infiltration.
Collapse
Affiliation(s)
- Sadegh Marzban
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Sonal Srivastava
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Sharon Kartika
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, India
| | - Rafael Bravo
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Rachel Safriel
- High School Internship Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Aidan Zarski
- High School Internship Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alexander R A Anderson
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Christine H Chung
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Antonio L Amelio
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jeffrey West
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| |
Collapse
|
14
|
Ramella-Roman JC, Mahendroo M, Raoux C, Latour G, Schanne-Klein MC. Quantitative Assessment of Collagen Remodeling during a Murine Pregnancy. ACS PHOTONICS 2024; 11:3536-3544. [PMID: 39310300 PMCID: PMC11413848 DOI: 10.1021/acsphotonics.4c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/25/2024]
Abstract
Uterine cervical remodeling is a fundamental feature of pregnancy, facilitating the delivery of the fetus through the cervical canal. Yet, we still know very little about this process due to the lack of methodologies that can quantitatively and unequivocally pinpoint the changes the cervix undergoes during pregnancy. We utilize polarization-resolved second harmonic generation to visualize the alterations the cervix extracellular matrix, specifically collagen, undergoes during pregnancy with exquisite resolution. This technique provides images of the collagen orientation at the pixel level (0.4 μm) over the entire murine cervical section. They show tight and ordered packing of collagen fibers around the os at the early stage of pregnancy and their disruption at the later stages. Furthermore, we utilize a straightforward statistical analysis to demonstrate the loss of order in the tissue, consistent with the loss of mechanical properties associated with this process. This work provides a deeper understanding of the parturition process and could support research into the cause of pathological or premature birth.
Collapse
Affiliation(s)
- Jessica C. Ramella-Roman
- Biomedical
Engineering Department, Florida International
University, Miami, Florida 33174, United States
| | - Mala Mahendroo
- Department
of Obstetrics and Gynecology, University
of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Clothilde Raoux
- Laboratory
for Optics and Biosciences (LOB), École Polytechnique, CNRS,
Inserm, Institut Polytechnique de Paris, Palaiseau 91120, France
| | - Gaël Latour
- Laboratory
for Optics and Biosciences (LOB), École Polytechnique, CNRS,
Inserm, Institut Polytechnique de Paris, Palaiseau 91120, France
- Université
Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Marie-Claire Schanne-Klein
- Laboratory
for Optics and Biosciences (LOB), École Polytechnique, CNRS,
Inserm, Institut Polytechnique de Paris, Palaiseau 91120, France
| |
Collapse
|
15
|
Cicchi R, Baria E, Mari M, Filippidis G, Chorvat D. Extraction of collagen morphological features from second-harmonic generation microscopy images via GLCM and CT analyses: A cross-laboratory study. JOURNAL OF BIOPHOTONICS 2024; 17:e202400090. [PMID: 38937995 DOI: 10.1002/jbio.202400090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024]
Abstract
Second-harmonic generation (SHG) microscopy provides a high-resolution label-free approach for noninvasively detecting collagen organization and its pathological alterations. Up to date, several imaging analysis algorithms for extracting collagen morphological features from SHG images-such as fiber size and length, order and anisotropy-have been developed. However, the dependence of extracted features on experimental setting represents a significant obstacle for translating the methodology in the clinical practice. We tackled this problem by acquiring SHG images of the same kind of collagenous sample in various laboratories using different experimental setups and imaging conditions. The acquired images were analyzed by commonly used algorithms, such as gray-level co-occurrence matrix or curvelet transform; the extracted morphological features were compared, finding that they strongly depend on some experimental parameters, whereas they are almost independent from others. We conclude with useful suggestions for comparing results obtained in different labs using different experimental setups and conditions.
Collapse
Affiliation(s)
- R Cicchi
- National Institute of Optics, National Research Council, Florence, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, Italy
| | - E Baria
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - M Mari
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Crete, Greece
| | - G Filippidis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Crete, Greece
| | - D Chorvat
- Department of Biophotonics, International Laser Centre (ILC), Slovak Centre of Scientific and Technical Information (SCSTI), Bratislava, Slovakia
| |
Collapse
|
16
|
Nguyen DC, Wells CK, Taylor MS, Martinez-Ondaro Y, Brittian KR, Brainard RE, Moore IV JB, Hill BG. Dietary Branched Chain Amino Acids Modify Post-Infarct Cardiac Remodeling and Function in the Murine Heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603348. [PMID: 39071416 PMCID: PMC11275808 DOI: 10.1101/2024.07.12.603348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Introduction Branch-chain amino acids (BCAA) are markedly elevated in the heart following myocardial infarction (MI) in both humans and animal models. Nevertheless, it remains unclear whether dietary BCAA levels influence post-MI remodeling. We hypothesize that lowering dietary BCAA levels prevents adverse cardiac remodeling after MI. Methods and Results To assess whether altering dietary BCAA levels would impact circulating BCAA concentrations, mice were fed a low (1/3×), normal (1×), or high (2×) BCAA diet over a 7-day period. We found that mice fed the low BCAA diet had >2-fold lower circulating BCAA concentrations when compared with normal and high BCAA diet feeding strategies; notably, the high BCAA diet did not further increase BCAA levels over the normal chow diet. To investigate the impact of dietary BCAAs on cardiac remodeling and function after MI, male and female mice were fed either the low or high BCAA diet for 2 wk prior to MI and for 4 wk after MI. Although body weights or heart masses were not different in female mice fed the custom diets, male mice fed the high BCAA diet had significantly higher body and heart masses than those on the low BCAA diet. Echocardiographic assessments revealed that the low BCAA diet preserved stroke volume and cardiac output for the duration of the study, while the high BCAA diet led to progressive decreases in cardiac function. Although no discernible differences in cardiac fibrosis, scar collagen topography, or cardiomyocyte cross-sectional area were found between the dietary groups, male mice fed the high BCAA diet showed longer cardiomyocytes and higher capillary density compared with the low BCAA group. Conclusions Provision of a diet low in BCAAs to mice mitigates eccentric cardiomyocyte remodeling and loss of cardiac function after MI, with dietary effects more prominent in males.
Collapse
Affiliation(s)
- Daniel C. Nguyen
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY
- Department of Physiology, University of Louisville, Louisville, KY
| | - Collin K. Wells
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY
| | - Madison S. Taylor
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY
| | - Yania Martinez-Ondaro
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY
| | - Kenneth R. Brittian
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY
| | | | - Joseph B. Moore IV
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY
| | - Bradford G. Hill
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY
| |
Collapse
|
17
|
Kuan CH, Tai KY, Lu SC, Wu YF, Wu PS, Kwang N, Wang WH, Mai-Yi Fan S, Wang SH, Chien HF, Lai HS, Lin MH, Plikus MV, Lin SJ. Delayed Collagen Production without Myofibroblast Formation Contributes to Reduced Scarring in Adult Skin Microwounds. J Invest Dermatol 2024; 144:1124-1133.e7. [PMID: 38036291 DOI: 10.1016/j.jid.2023.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/02/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
In adult mammals, wound healing predominantly follows a fibrotic pathway, culminating in scar formation. However, cutaneous microwounds generated through fractional photothermolysis, a modality that produces a constellation of microthermal zones, exhibit a markedly different healing trajectory. Our study delineates the cellular attributes of these microthermal zones, underscoring a temporally limited, subclinical inflammatory milieu concomitant with rapid re-epithelialization within 24 hours. This wound closure is facilitated by the activation of genes associated with keratinocyte migration and differentiation. In contrast to macrothermal wounds, which predominantly heal through a robust myofibroblast-mediated collagen deposition, microthermal zones are characterized by absence of wound contraction and feature delayed collagen remodeling, initiating 5-6 weeks after injury. This distinct wound healing is characterized by a rapid re-epithelialization process and a muted inflammatory response, which collectively serve to mitigate excessive myofibroblast activation. Furthermore, we identify an initial reparative phase characterized by a heterogeneous extracellular matrix protein composition, which precedes the delayed collagen remodeling. These findings extend our understanding of cutaneous wound healing and may have significant implications for the optimization of therapeutic strategies aimed at mitigating scar formation.
Collapse
Affiliation(s)
- Chen-Hsiang Kuan
- Graduate Institute of Clinical Research, College of Medicine, National Taiwan University, Taipei, Taiwan; Division of Plastic Surgery, Department of Surgery, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Kang-Yu Tai
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Shao-Chi Lu
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Yueh-Feng Wu
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Pei-Shan Wu
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Nellie Kwang
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, USA
| | - Wei-Hung Wang
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Sabrina Mai-Yi Fan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Shiou-Han Wang
- Department of Dermatology, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
| | - Hsiung-Fei Chien
- Division of Plastic Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan; TMU Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hong-Shiee Lai
- Department of Surgery, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan; Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Miao-Hsia Lin
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, USA
| | - Sung-Jan Lin
- Graduate Institute of Clinical Research, College of Medicine, National Taiwan University, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; Center for Frontier Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
18
|
Heaton AR, Burkard NJ, Sondel PM, Skala MC. Quantifying in vivo collagen reorganization during immunotherapy in murine melanoma with second harmonic generation imaging. BIOPHOTONICS DISCOVERY 2024; 1:015004. [PMID: 39011049 PMCID: PMC11247620 DOI: 10.1117/1.bios.1.1.015004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Significance Increased collagen linearization and deposition during tumorigenesis can impede immune cell infiltration and lead to tumor metastasis. Although melanoma is well studied in immunotherapy research, studies that quantify collagen changes during melanoma progression and treatment are lacking. Aim We aim to image in vivo collagen in preclinical melanoma models during immunotherapy and quantify the collagen phenotype in treated and control mice. Approach Second-harmonic generation imaging of collagen was performed in mouse melanoma tumors in vivo over a treatment time course. Animals were treated with a curative radiation and immunotherapy combination. Collagen morphology was quantified over time at an image and single-fiber level using CurveAlign and CT-FIRE software. Results In immunotherapy-treated mice, collagen was reorganized toward a healthy phenotype, including shorter, wider, curlier collagen fibers, with modestly higher collagen density. Temporally, collagen fiber straightness and length changed late in treatment (days 9 and 12), while width and density changed early (day 6) compared with control mice. Single-fiber collagen features calculated in CT-FIRE were the most sensitive to the changes among treatment groups compared with bulk collagen features. Conclusions Quantitative second-harmonic generation imaging can provide insight into collagen dynamics in vivo during immunotherapy, with key implications in improving immunotherapy response in melanoma and other cancers.
Collapse
Affiliation(s)
- Alexa R. Heaton
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin, Department of Human Oncology, Madison, Wisconsin, United States
| | - Nathaniel J. Burkard
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Paul M. Sondel
- University of Wisconsin, Department of Human Oncology, Madison, Wisconsin, United States
- University of Wisconsin, Department of Pediatrics, Madison, Wisconsin, United States
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin, Department of Biomedical Engineering, Madison, Wisconsin, United States
| |
Collapse
|
19
|
Rogovaya OS, Abolin DS, Cherkashina OL, Smyslov AD, Vorotelyak EA, Kalabusheva EP. In vitro and in vivo Evaluation of Antifibrotic Properties of Verteporfin in a Composition of a Collagen Scaffold. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:942-957. [PMID: 38880654 DOI: 10.1134/s0006297924050146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/05/2024] [Accepted: 03/31/2024] [Indexed: 06/18/2024]
Abstract
Extensive skin damage requires specialized therapy that stimulates regeneration processes without scarring. The possibility of using combination of a collagen gel application as a wound dressing and fibroblast attractant with verteporfin as an antifibrotic agent was examined in vivo and in vitro. In vitro effects of verteporfin on viability and myofibroblast markers expression were evaluated using fibroblasts isolated from human scar tissue. In vivo the collagen gel and verteporfin (individually and in combination) were applied into the wound to investigate scarring during skin regeneration: deviations in skin layer thickness, collagen synthesis, and extracellular matrix fibers were characterized. The results indicate that verteporfin reduces fibrotic phenotype by suppressing expression of the contractile protein Sm22α without inducing cell death. However, administration of verteporfin in combination with the collagen gel disrupts its ability to direct wound healing in a scarless manner, which may be related to incompatibility of the mechanisms by which collagen and verteporfin control regeneration.
Collapse
Affiliation(s)
- Olga S Rogovaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Danila S Abolin
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Olga L Cherkashina
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Artem D Smyslov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Ekaterina A Vorotelyak
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Ekaterina P Kalabusheva
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
20
|
Aggarwal N, Marsh R, Marcotti S, Shaw TJ, Stramer B, Cox S, Culley S. Characterisation and correction of polarisation effects in fluorescently labelled fibres. J Microsc 2024. [PMID: 38682883 DOI: 10.1111/jmi.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/27/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Many biological structures take the form of fibres and filaments, and quantitative analysis of fibre organisation is important for understanding their functions in both normal physiological conditions and disease. In order to visualise these structures, fibres can be fluorescently labelled and imaged, with specialised image analysis methods available for quantifying the degree and strength of fibre alignment. Here we show that fluorescently labelled fibres can display polarised emission, with the strength of this effect varying depending on structure and fluorophore identity. This can bias automated analysis of fibre alignment and mask the true underlying structural organisation. We present a method for quantifying and correcting these polarisation effects without requiring polarisation-resolved microscopy and demonstrate its efficacy when applied to images of fluorescently labelled collagen gels, allowing for more reliable characterisation of fibre microarchitecture.
Collapse
Affiliation(s)
- Nandini Aggarwal
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Richard Marsh
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Stefania Marcotti
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Tanya J Shaw
- Centre for Inflammation Biology & Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Brian Stramer
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Susan Cox
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Siân Culley
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
21
|
Henry S, Lewis SM, Cyrill SL, Callaway MK, Chatterjee D, Hanasoge Somasundara AV, Jones G, He XY, Caligiuri G, Ciccone MF, Diaz IA, Biswas AA, Hernandez E, Ha T, Wilkinson JE, Egeblad M, Tuveson DA, Dos Santos CO. Host response during unresolved urinary tract infection alters female mammary tissue homeostasis through collagen deposition and TIMP1. Nat Commun 2024; 15:3282. [PMID: 38627380 PMCID: PMC11021735 DOI: 10.1038/s41467-024-47462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
Exposure to pathogens throughout a lifetime influences immunity and organ function. Here, we explore how the systemic host-response to bacterial urinary tract infection (UTI) induces tissue-specific alterations to the mammary gland. Utilizing a combination of histological tissue analysis, single cell transcriptomics, and flow cytometry, we identify that mammary tissue from UTI-bearing mice displays collagen deposition, enlarged ductal structures, ductal hyperplasia with atypical epithelial transcriptomes and altered immune composition. Bacterial cells are absent in the mammary tissue and blood of UTI-bearing mice, therefore, alterations to the distal mammary tissue are mediated by the systemic host response to local infection. Furthermore, broad spectrum antibiotic treatment resolves the infection and restores mammary cellular and tissue homeostasis. Systemically, unresolved UTI correlates with increased plasma levels of the metalloproteinase inhibitor, TIMP1, which controls extracellular matrix remodeling and neutrophil function. Treatment of nulliparous and post-lactation UTI-bearing female mice with a TIMP1 neutralizing antibody, restores mammary tissue normal homeostasis, thus providing evidence for a link between the systemic host response during UTI and mammary gland alterations.
Collapse
Affiliation(s)
- Samantha Henry
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Stony Brook University, Graduate Program in Genetics, Stony Brook, NY, USA
| | - Steven Macauley Lewis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Stony Brook University, Graduate Program in Genetics, Stony Brook, NY, USA
| | | | | | | | | | - Gina Jones
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Xue-Yan He
- Department of Cell Biology and Physiology. School of Medicine in St. Louis. Washington University, St. Louis, MO, USA
| | | | | | | | - Amelia Aumalika Biswas
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- SUNY Downstate Health Sciences University, Neural and Behavior Science, Brooklyn, NY, USA
| | | | - Taehoon Ha
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - John Erby Wilkinson
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Mikala Egeblad
- Department of Cell Biology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
22
|
Colgrave EM, Keast JR, Nowell CJ, Healey M, Rogers PAW, Holdsworth-Carson SJ, Girling JE. Distribution of smooth muscle actin and collagen in superficial peritoneal endometriotic lesions varies from the surrounding microenvironment. Reprod Biomed Online 2024; 48:103610. [PMID: 38241767 DOI: 10.1016/j.rbmo.2023.103610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 01/21/2024]
Abstract
RESEARCH QUESTION Do different subtypes of superficial peritoneal endometriotic lesions exist, based on the presence and morphology of smooth muscle, collagen fibres and immune cell populations? DESIGN A retrospective cohort study of 24 patients, from across the menstrual cycle, with surgically and histologically confirmed endometriosis. Immunofluorescence was used to delineate the CD10 stromal area of lesions (n = 271 lesions from 67 endometriotic biopsies), and then smooth muscle actin (SMA) positive tissue and immune cell populations (CD45+ and CD68+) were quantified within and adjacent to these lesions. Second harmonic generation microscopy was used to evaluate the presence and morphology of type-1 collagen fibres within and surrounding lesions. RESULTS Overall, immune cell numbers and the area of SMA and collagen within endometriotic lesions tended to be low, but a spectrum of presentations significantly varied, particularly in the adjacent tissue microenvironment, based on lesion locations, the morphology of endometriotic gland profiles, or both. Lesions in which collagen fibres formed well aligned capsules around the CD10+ stromal border were identified compared with lesions in which collagen fibre distribution was random. Considerable inter- and intra-patient variability in the morphology of SMA and collagen was observed within and surrounding lesions. CONCLUSION These data demonstrate considerable diversity in the presence of immune cells and morphology of SMA and collagen within, but even more so, surrounding endometriotic lesions, even within individual patients. This heterogeneity, especially within individual patients, presents a challenge to incorporating these cell and tissue types into any new endometriosis classification systems or prognostic approaches.
Collapse
Affiliation(s)
- Eliza Morgan Colgrave
- Department of Obstetrics and Gynaecology, The University of Melbourne and Gynaecology Research Centre, Royal Women's Hospital, Melbourne, Victoria, Australia
| | - Janet R Keast
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Cameron J Nowell
- Imaging, FACS and Analysis Core, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Martin Healey
- Department of Obstetrics and Gynaecology, The University of Melbourne and Gynaecology Research Centre, Royal Women's Hospital, Melbourne, Victoria, Australia
| | - Peter A W Rogers
- Department of Obstetrics and Gynaecology, The University of Melbourne and Gynaecology Research Centre, Royal Women's Hospital, Melbourne, Victoria, Australia
| | - Sarah J Holdsworth-Carson
- Department of Obstetrics and Gynaecology, The University of Melbourne and Gynaecology Research Centre, Royal Women's Hospital, Melbourne, Victoria, Australia; The Julia Argyrou Endometriosis Centre, Epworth HealthCare, Richmond, Victoria, Australia
| | - Jane E Girling
- Department of Obstetrics and Gynaecology, The University of Melbourne and Gynaecology Research Centre, Royal Women's Hospital, Melbourne, Victoria, Australia; Department of Anatomy, School of Biomedical Sciences, The University of Otago, Dunedin, Aotearoa New Zealand.
| |
Collapse
|
23
|
Shi BY, Sriram V, Wu SY, Huang D, Cheney A, Metzger MF, Sundberg O, Lyons KM, McKenna CE, Nishimura I, Kremen TJ. Novel bisphosphonate-based cathepsin K-triggered compound targets the enthesis without impairing soft tissue-to-bone healing. Front Bioeng Biotechnol 2024; 12:1308161. [PMID: 38433822 PMCID: PMC10905384 DOI: 10.3389/fbioe.2024.1308161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
Background: Osteoadsorptive fluorogenic sentinel 3 (OFS-3) is a recently described compound that contains a bone-targeting bisphosphonate (BP) and cathepsin K (Ctsk)-triggered fluorescence signal. A prior study in a murine Achilles repair model demonstrated its effectiveness at targeting the site of tendon-to-bone repair, but the intrinsic effect of this novel bisphosphonate chaperone on tendon-to-bone healing has not been previously explored. We hypothesized that application of this bisphosphonate-fluorophore cargo conjugate would not affect the biomechanical properties or histologic appearance of tendon-bone repairs. Materials and Methods: Right hindlimb Achilles tendon-to-bone repair was performed on 12-week old male mice. Animals were divided into 2 groups of 18 each: 1) Achilles repair with OFS-3 applied directly to the repair site prior to closure, and 2) Achilles repair with saline applied prior to closure. Repaired hindlimbs from 12 animals per group were harvested at 6 weeks for biomechanical analysis with a custom 3D-printed jig. At 4 and 6 weeks, repaired hindlimbs from the remaining animals were assessed histologically using H&E, immunohistochemistry (IHC) staining for the presence of Ctsk, and second harmonic generation (SHG) imaging to evaluate collagen fibers. Results: At 6 weeks, there was no significant difference in failure load, stiffness, toughness, or displacement to failure between repaired hindlimbs that received OFS-3 versus saline. There was no difference in tissue healing on H&E or Ctsk staining on immunohistochemistry between animals that received OFS-3 versus saline. Finally, second harmonic generation imaging demonstrated no difference in collagen fiber parameters between the two groups. Conclusion: OFS-3 did not significantly affect the biomechanical properties or histologic appearance of murine Achilles tendon-to-bone repairs. This study demonstrates that OFS-3 can target the site of tendon-to-bone repair without causing intrinsic negative effects on healing. Further development of this drug delivery platform to target growth factors to the site of tendon-bone repair is warranted.
Collapse
Affiliation(s)
- Brendan Y. Shi
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
| | - Varun Sriram
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
| | - Shannon Y. Wu
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
| | - Dave Huang
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Alexis Cheney
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
| | - Melodie F. Metzger
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Oskar Sundberg
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Karen M. Lyons
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
- Department of Molecular, Cellular, and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, United States
| | - Charles E. McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Ichiro Nishimura
- Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, United States
| | - Thomas J. Kremen
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
24
|
Jennings CM, Markel AC, Domingo MJ, Miller KS, Bayer CL, Parekh SH. Collagen organization and structure in FLBN5-/- mice using label-free microscopy: implications for pelvic organ prolapse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578106. [PMID: 38352586 PMCID: PMC10862878 DOI: 10.1101/2024.01.31.578106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Pelvic organ prolapse (POP) is a gynecological disorder described by the descent of superior pelvic organs into or out of the vagina as a consequence of disrupted muscles and tissue. A thorough understanding of the etiology of POP is limited by the availability of clinically relevant samples, restricting longitudinal POP studies on soft-tissue biomechanics and structure to POP-induced models such as fibulin-5 knockout (FBLN5-/-) mice. Despite being a principal constituent in the extracellular matrix, little is known about structural perturbations to collagen networks in the FBLN5-/- mouse cervix. We identify significantly different collagen network populations in normal and prolapsed cervical cross-sections using two label-free, nonlinear microscopy techniques. Collagen in the prolapsed mouse cervix tends to be more isotropic, and displays reduced alignment persistence via 2-D Fourier Transform analysis of images acquired using second harmonic generation microscopy. Furthermore, coherent Raman hyperspectral imaging revealed elevated disorder in the secondary structure of collagen in prolapsed tissues. Our results underscore the need for in situ multimodal monitoring of collagen organization to improve POP predictive capabilities.
Collapse
Affiliation(s)
- Christian M. Jennings
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Andrew C. Markel
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Mari J.E. Domingo
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Kristin S. Miller
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carolyn L. Bayer
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Sapun H. Parekh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
25
|
Lichtenberg JY, Ramamurthy E, Young AD, Redman TP, Leonard CE, Das SK, Fisher PB, Lemmon CA, Hwang PY. Leader cells mechanically respond to aligned collagen architecture to direct collective migration. PLoS One 2024; 19:e0296153. [PMID: 38165954 PMCID: PMC10760762 DOI: 10.1371/journal.pone.0296153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/06/2023] [Indexed: 01/04/2024] Open
Abstract
Leader cells direct collective migration through sensing cues in their microenvironment to determine migration direction. The mechanism by which leader cells sense the mechanical cue of organized matrix architecture culminating in a mechanical response is not well defined. In this study, we investigated the effect of organized collagen matrix fibers on leader cell mechanics and demonstrate that leader cells protrude along aligned fibers resulting in an elongated phenotype of the entire cluster. Further, leader cells show increased mechanical interactions with their nearby matrix compared to follower cells, as evidenced by increased traction forces, increased and larger focal adhesions, and increased expression of integrin-α2. Together our results demonstrate changes in mechanical matrix cues drives changes in leader cell mechanoresponse that is required for directional collective migration. Our findings provide new insights into two fundamental components of carcinogenesis, namely invasion and metastasis.
Collapse
Affiliation(s)
- Jessanne Y. Lichtenberg
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ella Ramamurthy
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Bioengineering, University of California Berkeley, Berkeley, California, United States of America
| | - Anna D. Young
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Trey P. Redman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Corinne E. Leonard
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Christopher A. Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Priscilla Y. Hwang
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
26
|
Polzer S, Thompson S, Vittalbabu S, Ulu A, Carter D, Nordgren T, Eskandari M. MATLAB-Based Algorithm and Software for Analysis of Wavy Collagen Fibers. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:2108-2126. [PMID: 37992253 DOI: 10.1093/micmic/ozad117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 11/24/2023]
Abstract
Knowledge of soft tissue fiber structure is necessary for accurate characterization and modeling of their mechanical response. Fiber configuration and structure informs both our understanding of healthy tissue physiology and of pathological processes resulting from diseased states. This study develops an automatic algorithm to simultaneously estimate fiber global orientation, abundance, and waviness in an investigated image. To our best knowledge, this is the first validated algorithm which can reliably separate fiber waviness from its global orientation for considerably wavy fibers. This is much needed feature for biological tissue characterization. The algorithm is based on incremental movement of local regions of interest (ROI) and analyzes two-dimensional images. Pixels belonging to the fiber are identified in the ROI, and ROI movement is determined according to local orientation of fiber within the ROI. The algorithm is validated with artificial images and ten images of porcine trachea containing wavy fibers. In each image, 80-120 fibers were tracked manually to serve as verification. The coefficient of determination R2 between curve lengths and histograms documenting the fiber waviness and global orientation were used as metrics for analysis. Verification-confirmed results were independent of image rotation and degree of fiber waviness, with curve length accuracy demonstrated to be below 1% of fiber curved length. Validation-confirmed median and interquartile range of R2, respectively, were 0.90 and 0.05 for curved length, 0.92 and 0.07 for waviness, and 0.96 and 0.04 for global orientation histograms. Software constructed from the proposed algorithm was able to track one fiber in about 1.1 s using a typical office computer. The proposed algorithm can reliably and accurately estimate fiber waviness, curve length, and global orientation simultaneously, moving beyond the limitations of prior methods.
Collapse
Affiliation(s)
- Stanislav Polzer
- Department of Applied Mechanics, VSB-Technical University of Ostrava, 17.listopadu 2172/15, 708 00 Ostrava, Czech Republic
| | - Sarah Thompson
- Department of Mechanical Engineering, University of California at Riverside, 3401 Watkins Drive, Riverside CA 92521, USA
| | - Swathi Vittalbabu
- Department of Mechanical Engineering, University of California at Riverside, 3401 Watkins Drive, Riverside CA 92521, USA
| | - Arzu Ulu
- BREATHE Center School of Medicine, University of California at Riverside, 3401 Watkins Drive, Riverside CA 92521USA
| | - David Carter
- Molecular Cell and Systems Biology, University of California at Riverside, 900 University Ave, Riverside CA 92521, USA
| | - Tara Nordgren
- BREATHE Center School of Medicine, University of California at Riverside, 3401 Watkins Drive, Riverside CA 92521USA
| | - Mona Eskandari
- Department of Mechanical Engineering, University of California at Riverside, 3401 Watkins Drive, Riverside CA 92521, USA
- BREATHE Center School of Medicine, University of California at Riverside, 3401 Watkins Drive, Riverside CA 92521USA
| |
Collapse
|
27
|
Agrawal A, Lasli S, Javanmardi Y, Coursier D, Micalet A, Watson S, Shahreza S, Serwinski B, Djordjevic B, Szita N, Cheema U, Bertazzo S, Calvo F, Moeendarbary E. Stromal cells regulate mechanics of tumour spheroid. Mater Today Bio 2023; 23:100821. [PMID: 37868949 PMCID: PMC10585335 DOI: 10.1016/j.mtbio.2023.100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/15/2023] [Accepted: 09/24/2023] [Indexed: 10/24/2023] Open
Abstract
The remarkable contractility and force generation ability exhibited by cancer cells empower them to overcome the resistance and steric hindrance presented by a three-dimensional, interconnected matrix. Cancer cells disseminate by actively remodelling and deforming their extracellular matrix (ECM). The process of tumour growth and its ECM remodelling have been extensively studied, but the effect of the cellular tumour microenvironment (TME) has been ignored in most studies that investigated tumour-cell-mediated ECM deformations and realignment. This study reports the integration of stromal cells in spheroid contractility assays that impacts the ECM remodelling and invasion abilities of cancer spheroids. To investigate this, we developed a novel multilayer in vitro assay that incorporates stromal cells and quantifies the contractile deformations that tumour spheroids exert on the ECM. We observed a negative correlation between the spheroid invasion potential and the levels of collagen deformation. The presence of stromal cells significantly increased cancer cell invasiveness and altered the cancer cells' ability to deform and realign collagen gel, due to upregulation of proinflammatory cytokines. Interestingly, this was observed consistently in both metastatic and non-metastatic cancer cells. Our findings contribute to a better understanding of the vital role played by the cellular TME in regulating the invasive outgrowth of cancer cells and underscore the potential of utilising matrix deformation measurements as a biophysical marker for evaluating invasiveness and informing targeted therapeutic opportunities.
Collapse
Affiliation(s)
- Ayushi Agrawal
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
| | - Soufian Lasli
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
| | - Yousef Javanmardi
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
| | - Diane Coursier
- 199 Biotechnologies Ltd, Gloucester Road, London, W2 6LD, UK
| | - Auxtine Micalet
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
- Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, London WC1E 7JE, UK
| | - Sara Watson
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
| | - Somayeh Shahreza
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
| | - Bianca Serwinski
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
- 199 Biotechnologies Ltd, Gloucester Road, London, W2 6LD, UK
- Faculty of Social Sciences, Northeastern University London, London, E1W 1LP, UK
| | - Boris Djordjevic
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
- 199 Biotechnologies Ltd, Gloucester Road, London, W2 6LD, UK
| | - Nicolas Szita
- Department of Biochemical Engineering, University College London, London WC1E 7JE, UK
| | - Umber Cheema
- Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, London WC1E 7JE, UK
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria (Consejo Superior de Investigaciones Científicas, Universidad de Cantabria), Santander, Spain
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
28
|
Heaton AR, Burkard NJ, Sondel PM, Skala MC. Quantifying in vivo collagen reorganization during immunotherapy in murine melanoma with second harmonic generation imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566407. [PMID: 38014149 PMCID: PMC10680631 DOI: 10.1101/2023.11.09.566407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Significance Increased collagen linearization and deposition during tumorigenesis can impede immune cell infiltration and lead to tumor metastasis. Although melanoma is well studied in immunotherapy research, studies that quantify collagen changes during melanoma progression and treatment are lacking. Aim Image in vivo collagen in preclinical melanoma models during immunotherapy and quantify the collagen phenotype in treated and control mice. Approach Second harmonic generation imaging of collagen was performed in mouse melanoma tumors in vivo over a treatment time-course. Animals were treated with a curative radiation and immunotherapy combination. Collagen morphology was quantified over time at an image and single fiber level using CurveAlign and CT-FIRE software. Results In immunotherapy-treated mice, collagen reorganized toward a healthy phenotype, including shorter, wider, curlier collagen fibers, with modestly higher collagen density. Temporally, collagen fiber straightness and length changed late in treatment (Day 9 and 12) while width and density changed early (Day 6) compared to control mice. Single fiber level collagen analysis was most sensitive to the changes between treatment groups compared to image level analysis. Conclusions Quantitative second harmonic generation imaging can provide insight into collagen dynamics in vivo during immunotherapy, with key implications in improving immunotherapy response in melanoma and other cancers.
Collapse
|
29
|
Wang S, Liu X, Li Y, Sun X, Li Q, She Y, Xu Y, Huang X, Lin R, Kang D, Wang X, Tu H, Liu W, Huang F, Chen J. A deep learning-based stripe self-correction method for stitched microscopic images. Nat Commun 2023; 14:5393. [PMID: 37669977 PMCID: PMC10480181 DOI: 10.1038/s41467-023-41165-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
Stitched fluorescence microscope images inevitably exist in various types of stripes or artifacts caused by uncertain factors such as optical devices or specimens, which severely affects the image quality and downstream quantitative analysis. Here, we present a deep learning-based Stripe Self-Correction method, so-called SSCOR. Specifically, we propose a proximity sampling scheme and adversarial reciprocal self-training paradigm that enable SSCOR to utilize stripe-free patches sampled from the stitched microscope image itself to correct their adjacent stripe patches. Comparing to off-the-shelf approaches, SSCOR can not only adaptively correct non-uniform, oblique, and grid stripes, but also remove scanning, bubble, and out-of-focus artifacts, achieving the state-of-the-art performance across different imaging conditions and modalities. Moreover, SSCOR does not require any physical parameter estimation, patch-wise manual annotation, or raw stitched information in the correction process. This provides an intelligent prior-free image restoration solution for microscopists or even microscope companies, thus ensuring more precise biomedical applications for researchers.
Collapse
Affiliation(s)
- Shu Wang
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China
- College of Computer and Data Science, Fuzhou University, Fuzhou, 350108, China
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Xiaoxiang Liu
- College of Computer and Data Science, Fuzhou University, Fuzhou, 350108, China
| | - Yueying Li
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China
| | - Xinquan Sun
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China
| | - Qi Li
- College of Computer and Data Science, Fuzhou University, Fuzhou, 350108, China
| | - Yinhua She
- College of Computer and Data Science, Fuzhou University, Fuzhou, 350108, China
| | - Yixuan Xu
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China
| | - Xingxin Huang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Ruolan Lin
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Deyong Kang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xingfu Wang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Haohua Tu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Wenxi Liu
- College of Computer and Data Science, Fuzhou University, Fuzhou, 350108, China.
| | - Feng Huang
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China.
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China.
| |
Collapse
|
30
|
Mizuno S, Matsunaga S, Kasahara N, Kasahara M, Shimoo Y, Abe S, Nakano T, Ishimoto T, Hikita A, Nojima K, Nishii Y. Effect of the Correction of Bilateral Differences in Masseter Muscle Functional Pressure on the Mandible of Growing Rats. J Funct Biomater 2023; 14:435. [PMID: 37623679 PMCID: PMC10455519 DOI: 10.3390/jfb14080435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/05/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023] Open
Abstract
The objective of this study is to clarify the effect of restoring the lowered masticatory muscle functional pressure and correcting bilateral differences in masticatory muscle functional pressure on jawbone growth during growth and development with a quantitative evaluation of the changes in the micro/nanostructural characteristics of entheses. Male Wistar rats aged 4 weeks were divided into an experimental group injected with a botulinum toxin serotype A (BoNT/A) formulation to reduce muscle function (BTX group) and a control group (CTRL group). They were euthanised after 6, 8, 10, 12, and 16 weeks after measuring the difference between the midline of the upper and lower incisors. The mandibles were harvested for histological examination, second harmonic generation imaging, and the quantitative evaluation of biological apatite (BAp) crystal alignment. The midline difference decreased with age in weeks. In rats from 6 weeks after BoNT/A administration to 12 weeks after administration, the collagen fibre bundle diameter was significantly smaller in the BTX group; the difference between the two groups decreased with increasing age. BAp crystal alignment was significantly different on the x-axis and the y-axis on the BTX group from 6 weeks after BoNT/A administration to 10 weeks after administration. Asymmetry of mandibular bone formation caused by load imbalance during growth could be corrected by the adjustment of the function of the masseter muscle on either side.
Collapse
Affiliation(s)
- Shuhei Mizuno
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-006, Japan; (S.M.); (N.K.); (M.K.); (S.A.); (K.N.); (Y.N.)
- Department of Orthodontics, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-006, Japan
| | - Satoru Matsunaga
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-006, Japan; (S.M.); (N.K.); (M.K.); (S.A.); (K.N.); (Y.N.)
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-006, Japan
| | - Norio Kasahara
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-006, Japan; (S.M.); (N.K.); (M.K.); (S.A.); (K.N.); (Y.N.)
- Department of Histology and Developmental Biology, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-006, Japan
| | - Masaaki Kasahara
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-006, Japan; (S.M.); (N.K.); (M.K.); (S.A.); (K.N.); (Y.N.)
- Department of Dental Material Science, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-006, Japan
| | - Yoshiaki Shimoo
- Malo Dental and Medical Tokyo, 7-8-10, Chuo-ku, Ginza, Tokyo 104-0061, Japan;
| | - Shinichi Abe
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-006, Japan; (S.M.); (N.K.); (M.K.); (S.A.); (K.N.); (Y.N.)
- Department of Anatomy, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-006, Japan
| | - Takayoshi Nakano
- Division of Materials & Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan;
| | - Takuya Ishimoto
- Aluminium Research Center, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan;
| | - Atsuhiko Hikita
- Department of Tissue Engineering, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan;
| | - Kunihiko Nojima
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-006, Japan; (S.M.); (N.K.); (M.K.); (S.A.); (K.N.); (Y.N.)
- Department of Orthodontics, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-006, Japan
| | - Yasushi Nishii
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-006, Japan; (S.M.); (N.K.); (M.K.); (S.A.); (K.N.); (Y.N.)
- Department of Orthodontics, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-006, Japan
| |
Collapse
|
31
|
Gomes EFA, Paulino Junior E, de Lima MFR, Reis LA, Paranhos G, Mamede M, Longford FGJ, Frey JG, de Paula AM. Prostate cancer tissue classification by multiphoton imaging, automated image analysis and machine learning. JOURNAL OF BIOPHOTONICS 2023; 16:e202200382. [PMID: 36806587 DOI: 10.1002/jbio.202200382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/07/2023]
Abstract
Prostate carcinoma, a slow-growing and often indolent tumour, is the second most commonly diagnosed cancer among men worldwide. The prognosis is mainly based on the Gleason system through prostate biopsy analysis. However, new treatment and monitoring strategies depend on a more precise diagnosis. Here, we present results by multiphoton imaging for prostate tumour samples from 120 patients that allow to obtain quantitative parameters leading to specific tumour aggressiveness signatures. An automated image analysis was developed to recognise and quantify stromal fibre and neoplastic cell regions in each image. The set of metrics was able to distinguish between non-neoplastic tissue and carcinoma areas by linear discriminant analysis and random forest with accuracy of 89% ± 3%, but between Gleason groups of only 46% ± 6%. The reactive stroma analysis improved the accuracy to 65% ± 5%, clearly demonstrating that stromal parameters should be considered as additional criteria for a more accurate diagnosis.
Collapse
Affiliation(s)
- Egleidson F A Gomes
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Eduardo Paulino Junior
- Departamento de Anatomia Patológica e Medicina Legal, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Luana A Reis
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Giovanna Paranhos
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcelo Mamede
- Departamento Anatomia e Imagem, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Ana Maria de Paula
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
32
|
Aghigh A, Preston SEJ, Jargot G, Ibrahim H, Del Rincón SV, Légaré F. Nonlinear microscopy and deep learning classification for mammary gland microenvironment studies. BIOMEDICAL OPTICS EXPRESS 2023; 14:2181-2195. [PMID: 37206132 PMCID: PMC10191635 DOI: 10.1364/boe.487087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 05/21/2023]
Abstract
Tumors, their microenvironment, and the mechanisms by which collagen morphology changes throughout cancer progression have recently been a topic of interest. Second harmonic generation (SHG) and polarization second harmonic (P-SHG) microscopy are label-free, hallmark methods that can highlight this alteration in the extracellular matrix (ECM). This article uses automated sample scanning SHG and P-SHG microscopy to investigate ECM deposition associated with tumors residing in the mammary gland. We show two different analysis approaches using the acquired images to distinguish collagen fibrillar orientation changes in the ECM. Lastly, we apply a supervised deep-learning model to classify naïve and tumor-bearing mammary gland SHG images. We benchmark the trained model using transfer learning with the well-known MobileNetV2 architecture. By fine-tuning the different parameters of these models, we show a trained deep-learning model that suits such a small dataset with 73% accuracy.
Collapse
Affiliation(s)
- Arash Aghigh
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, Québec, Canada
| | - Samuel E. J. Preston
- Department of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Québec, Canada
- Gerald Bronfman Department of Oncology, Segal Cancer Centre, Lady Davis Institute and Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Gaëtan Jargot
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, Québec, Canada
| | - Heide Ibrahim
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, Québec, Canada
| | - Sonia V Del Rincón
- Department of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Québec, Canada
- Gerald Bronfman Department of Oncology, Segal Cancer Centre, Lady Davis Institute and Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - François Légaré
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, Québec, Canada
| |
Collapse
|
33
|
Jiang Y, Trotsyuk AA, Niu S, Henn D, Chen K, Shih CC, Larson MR, Mermin-Bunnell AM, Mittal S, Lai JC, Saberi A, Beard E, Jing S, Zhong D, Steele SR, Sun K, Jain T, Zhao E, Neimeth CR, Viana WG, Tang J, Sivaraj D, Padmanabhan J, Rodrigues M, Perrault DP, Chattopadhyay A, Maan ZN, Leeolou MC, Bonham CA, Kwon SH, Kussie HC, Fischer KS, Gurusankar G, Liang K, Zhang K, Nag R, Snyder MP, Januszyk M, Gurtner GC, Bao Z. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat Biotechnol 2023; 41:652-662. [PMID: 36424488 DOI: 10.1038/s41587-022-01528-3] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 09/23/2022] [Indexed: 11/26/2022]
Abstract
'Smart' bandages based on multimodal wearable devices could enable real-time physiological monitoring and active intervention to promote healing of chronic wounds. However, there has been limited development in incorporation of both sensors and stimulators for the current smart bandage technologies. Additionally, while adhesive electrodes are essential for robust signal transduction, detachment of existing adhesive dressings can lead to secondary damage to delicate wound tissues without switchable adhesion. Here we overcome these issues by developing a flexible bioelectronic system consisting of wirelessly powered, closed-loop sensing and stimulation circuits with skin-interfacing hydrogel electrodes capable of on-demand adhesion and detachment. In mice, we demonstrate that our wound care system can continuously monitor skin impedance and temperature and deliver electrical stimulation in response to the wound environment. Across preclinical wound models, the treatment group healed ~25% more rapidly and with ~50% enhancement in dermal remodeling compared with control. Further, we observed activation of proregenerative genes in monocyte and macrophage cell populations, which may enhance tissue regeneration, neovascularization and dermal recovery.
Collapse
Affiliation(s)
- Yuanwen Jiang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Artem A Trotsyuk
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Simiao Niu
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Dominic Henn
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Kellen Chen
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Chien-Chung Shih
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Madelyn R Larson
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Alana M Mermin-Bunnell
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Smiti Mittal
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Jian-Cheng Lai
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Aref Saberi
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Ethan Beard
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Serena Jing
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Donglai Zhong
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Sydney R Steele
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Kefan Sun
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Tanish Jain
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Eric Zhao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Christopher R Neimeth
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Willian G Viana
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jing Tang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Dharshan Sivaraj
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jagannath Padmanabhan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Melanie Rodrigues
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - David P Perrault
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Arhana Chattopadhyay
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Zeshaan N Maan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Melissa C Leeolou
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Clark A Bonham
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sun Hyung Kwon
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Hudson C Kussie
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Katharina S Fischer
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA
| | | | - Kui Liang
- BOE Technology Center, BOE Technology Group Co., Ltd, Beijing, China
| | - Kailiang Zhang
- BOE Technology Center, BOE Technology Group Co., Ltd, Beijing, China
| | - Ronjon Nag
- Stanford Distinguished Careers Institute, Stanford University, Stanford, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Januszyk
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Geoffrey C Gurtner
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA.
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
34
|
Sendín-Martín M, Posner J, Harris U, Moronta M, Conejo-Mir Sánchez J, Mukherjee S, Rajadhyaksha M, Kose K, Jain M. Quantitative collagen analysis using second harmonic generation images for the detection of basal cell carcinoma with ex vivo multiphoton microscopy. Exp Dermatol 2023; 32:392-402. [PMID: 36409162 PMCID: PMC10478030 DOI: 10.1111/exd.14713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/22/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Basal cell carcinoma (BCC) is the most common skin cancer, and its incidence is rising. Millions of benign biopsies are performed annually for BCC diagnosis, increasing morbidity, and healthcare costs. Non-invasive in vivo technologies such as multiphoton microscopy (MPM) can aid in diagnosing BCC, reducing the need for biopsies. Furthermore, the second harmonic generation (SHG) signal generated from MPM can classify and prognosticate cancers based on extracellular matrix changes, especially collagen type I. We explored the potential of MPM to differentiate collagen changes associated with different BCC subtypes compared to normal skin structures and benign lesions. Quantitative analysis such as frequency band energy analysis in Fourier domain, CurveAlign and CT-FIRE fibre analysis was performed on SHG images from 52 BCC and 12 benign lesions samples. Our results showed that collagen distribution is more aligned surrounding BCCs nests compared to the skin's normal structures (p < 0.001) and benign lesions (p < 0.001). Also, collagen was orientated more parallelly surrounding indolent BCC subtypes (superficial and nodular) versus those with more aggressive behaviour (infiltrative BCC) (p = 0.021). In conclusion, SHG signal from type I collagen can aid not only in the diagnosis of BCC but could be useful for prognosticating these tumors. Our initial results are limited to a small number of samples, requiring large-scale studies to validate them. These findings represent the groundwork for future in vivo MPM for diagnosis and prognosis of BCC.
Collapse
Affiliation(s)
- Mercedes Sendín-Martín
- Hospital Universitario Virgen del Rocío, Dermatology Department, Sevilla (Spain)
- Universidad de Sevilla, Department of Medicine, Sevilla (Spain)
| | - Jasmine Posner
- Memorial Sloan Kettering Cancer Center, Dermatology Service, Department of Medicine, New York (USA)
| | - Ucalene Harris
- Memorial Sloan Kettering Cancer Center, Dermatology Service, Department of Medicine, New York (USA)
| | - Matthew Moronta
- Memorial Sloan Kettering Cancer Center, Dermatology Service, Department of Medicine, New York (USA)
| | - Julián Conejo-Mir Sánchez
- Hospital Universitario Virgen del Rocío, Dermatology Department, Sevilla (Spain)
- Universidad de Sevilla, Department of Medicine, Sevilla (Spain)
| | - Sushmita Mukherjee
- Weill Cornell Medicine, Dermatology Service, Department of Medicine, New York (USA)
| | - Milind Rajadhyaksha
- Memorial Sloan Kettering Cancer Center, Dermatology Service, Department of Medicine, New York (USA)
| | - Kivanc Kose
- Memorial Sloan Kettering Cancer Center, Dermatology Service, Department of Medicine, New York (USA)
| | - Manu Jain
- Memorial Sloan Kettering Cancer Center, Dermatology Service, Department of Medicine, New York (USA)
- Weill Cornell Medicine, Dermatology Service, Department of Medicine, New York (USA)
| |
Collapse
|
35
|
Phase-specific signatures of wound fibroblasts and matrix patterns define cancer-associated fibroblast subtypes. Matrix Biol 2023; 119:19-56. [PMID: 36914141 DOI: 10.1016/j.matbio.2023.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/23/2023] [Accepted: 03/02/2023] [Indexed: 03/13/2023]
Abstract
Healing wounds and cancers present remarkable cellular and molecular parallels, but the specific roles of the healing phases are largely unknown. We developed a bioinformatics pipeline to identify genes and pathways that define distinct phases across the time-course of healing. Their comparison to cancer transcriptomes revealed that a resolution phase wound signature is associated with increased severity in skin cancer and enriches for extracellular matrix-related pathways. Comparisons of transcriptomes of early- and late-phase wound fibroblasts vs skin cancer-associated fibroblasts (CAFs) identified an "early wound" CAF subtype, which localizes to the inner tumor stroma and expresses collagen-related genes that are controlled by the RUNX2 transcription factor. A "late wound" CAF subtype localizes to the outer tumor stroma and expresses elastin-related genes. Matrix imaging of primary melanoma tissue microarrays validated these matrix signatures and identified collagen- vs elastin-rich niches within the tumor microenvironment, whose spatial organization predicts survival and recurrence. These results identify wound-regulated genes and matrix patterns with prognostic potential in skin cancer.
Collapse
|
36
|
McGowan SE. Discoidin domain receptor-2 enhances secondary alveolar septation in mice by activating integrins and modifying focal adhesions. Am J Physiol Lung Cell Mol Physiol 2023; 324:L307-L324. [PMID: 36719983 PMCID: PMC9988528 DOI: 10.1152/ajplung.00169.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 02/02/2023] Open
Abstract
The extracellular matrix (ECM) of the pulmonary parenchyma must maintain the structural relationships among resident cells during the constant distortion imposed by respiration. This dictates that both the ECM and cells adapt to changes in shape, while retaining their attachment. Membrane-associated integrins and discoidin domain receptors (DDR) bind collagen and transmit signals to the cellular cytoskeleton. Although the contributions of DDR2 to collagen deposition and remodeling during osseous development are evident, it is unclear how DDR2 contributes to lung development. Using mice (smallie, Slie/Slie, DDR2Δ) bearing a spontaneous inactivating deletion within the DDR2 coding region, we observed a decrease in gas-exchange surface area and enlargement of alveolar ducts. Compared with fibroblasts isolated from littermate controls, DDR2Δ fibroblasts, spread more slowly, developed fewer lamellipodia, and were less responsive to the rigidity of neighboring collagen fibers. Activated β1-integrin (CD29) was reduced in focal adhesions (FA) of DDR2Δ fibroblasts, less phospho-zyxin localized to and fewer FA developed over ventral actin stress fibers, and the adhesions had a lower aspect ratio compared with controls. However, DDR2 deletion did not reduce cellular displacement of the ECM. Our findings indicate that DDR2, in concert with collagen-binding β1-integrins, regulates the timing and location of focal adhesion formation and how lung fibroblasts respond to ECM rigidity. Reduced rigidity sensing and mechano-responsiveness may contribute to the distortion of alveolar ducts, where the fiber cable-network is enriched and tensile forces are concentrated. Strategies targeting DDR2 could help guide fibroblasts to locations where tensile forces organize parenchymal repair.
Collapse
Affiliation(s)
- Stephen E McGowan
- Department of Veterans Affairs Research Service, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| |
Collapse
|
37
|
Hu L, Morganti S, Nguyen U, Benavides OR, Walsh AJ. Label-free optical imaging of cell function and collagen structure for cell-based therapies. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023; 25:100433. [PMID: 36642995 PMCID: PMC9836225 DOI: 10.1016/j.cobme.2022.100433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell-based therapies harness functional cells or tissues to mediate healing and treat disease. Assessment of cellular therapeutics requires methods that are non-destructive to ensure therapies remain viable and uncontaminated for use in patients. Optical imaging of endogenous collagen, by second-harmonic generation, and the metabolic coenzymes NADH and FAD, by autofluorescence microscopy, provides tissue structure and cellular information. Here, we review applications of label-free nonlinear optical imaging of cellular metabolism and collagen second-harmonic generation for assessing cell-based therapies. Additionally, we discuss the potential of label-free imaging for quality control of cell-based therapies, as well as the current limitations and potential future directions of label-free imaging technologies.
Collapse
|
38
|
Ahangari F, Price NL, Malik S, Chioccioli M, Bärnthaler T, Adams TS, Kim J, Pradeep SP, Ding S, Cosmos C, Rose KAS, McDonough JE, Aurelien NR, Ibarra G, Omote N, Schupp JC, DeIuliis G, Villalba Nunez JA, Sharma L, Ryu C, Dela Cruz CS, Liu X, Prasse A, Rosas I, Bahal R, Fernández-Hernando C, Kaminski N. microRNA-33 deficiency in macrophages enhances autophagy, improves mitochondrial homeostasis, and protects against lung fibrosis. JCI Insight 2023; 8:e158100. [PMID: 36626225 PMCID: PMC9977502 DOI: 10.1172/jci.insight.158100] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal disease. Recent findings have shown a marked metabolic reprogramming associated with changes in mitochondrial homeostasis and autophagy during pulmonary fibrosis. The microRNA-33 (miR-33) family of microRNAs (miRNAs) encoded within the introns of sterol regulatory element binding protein (SREBP) genes are master regulators of sterol and fatty acid (FA) metabolism. miR-33 controls macrophage immunometabolic response and enhances mitochondrial biogenesis, FA oxidation, and cholesterol efflux. Here, we show that miR-33 levels are increased in bronchoalveolar lavage (BAL) cells isolated from patients with IPF compared with healthy controls. We demonstrate that specific genetic ablation of miR-33 in macrophages protects against bleomycin-induced pulmonary fibrosis. The absence of miR-33 in macrophages improves mitochondrial homeostasis and increases autophagy while decreasing inflammatory response after bleomycin injury. Notably, pharmacological inhibition of miR-33 in macrophages via administration of anti-miR-33 peptide nucleic acids (PNA-33) attenuates fibrosis in different in vivo and ex vivo mice and human models of pulmonary fibrosis. These studies elucidate a major role of miR-33 in macrophages in the regulation of pulmonary fibrosis and uncover a potentially novel therapeutic approach to treat this disease.
Collapse
Affiliation(s)
- Farida Ahangari
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nathan L. Price
- Vascular Biology and Therapeutics Program, Yale Center for Molecular and System Metabolism, Department of Comparative Medicine, and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Shipra Malik
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Maurizio Chioccioli
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Thomas Bärnthaler
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Taylor S. Adams
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jooyoung Kim
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sai Pallavi Pradeep
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Shuizi Ding
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Carlos Cosmos
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kadi-Ann S. Rose
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - John E. McDonough
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Nachelle R. Aurelien
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Internal Medicine, Weill Cornell Hospital Medicine, New York, New York, USA
| | - Gabriel Ibarra
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Life Span Medical Group, Department of Internal Medicine, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Norihito Omote
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jonas C. Schupp
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Giuseppe DeIuliis
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Julian A. Villalba Nunez
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Changwan Ryu
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Charles S. Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xinran Liu
- Center for Cellular and Molecular Imaging (CCMI), Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Antje Prasse
- Department of Pneumology, University of Hannover, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Ivan Rosas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale Center for Molecular and System Metabolism, Department of Comparative Medicine, and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
39
|
Li B, Nelson MS, Chacko JV, Cudworth N, Eliceiri KW. Hardware-software co-design of an open-source automatic multimodal whole slide histopathology imaging system. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:026501. [PMID: 36761254 PMCID: PMC9905038 DOI: 10.1117/1.jbo.28.2.026501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Significance Advanced digital control of microscopes and programmable data acquisition workflows have become increasingly important for improving the throughput and reproducibility of optical imaging experiments. Combinations of imaging modalities have enabled a more comprehensive understanding of tissue biology and tumor microenvironments in histopathological studies. However, insufficient imaging throughput and complicated workflows still limit the scalability of multimodal histopathology imaging. Aim We present a hardware-software co-design of a whole slide scanning system for high-throughput multimodal tissue imaging, including brightfield (BF) and laser scanning microscopy. Approach The system can automatically detect regions of interest using deep neural networks in a low-magnification rapid BF scan of the tissue slide and then conduct high-resolution BF scanning and laser scanning imaging on targeted regions with deep learning-based run-time denoising and resolution enhancement. The acquisition workflow is built using Pycro-Manager, a Python package that bridges hardware control libraries of the Java-based open-source microscopy software Micro-Manager in a Python environment. Results The system can achieve optimized imaging settings for both modalities with minimized human intervention and speed up the laser scanning by an order of magnitude with run-time image processing. Conclusions The system integrates the acquisition pipeline and data analysis pipeline into a single workflow that improves the throughput and reproducibility of multimodal histopathological imaging.
Collapse
Affiliation(s)
- Bin Li
- University of Wisconsin–Madison, Center for Quantitative Cell Imaging, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
- Morgridge Institute for Research, Madison, Wisconsin, United States
| | - Michael S. Nelson
- University of Wisconsin–Madison, Center for Quantitative Cell Imaging, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Jenu V. Chacko
- University of Wisconsin–Madison, Center for Quantitative Cell Imaging, Madison, Wisconsin, United States
| | - Nathan Cudworth
- University of Wisconsin–Madison, Center for Quantitative Cell Imaging, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
| | - Kevin W. Eliceiri
- University of Wisconsin–Madison, Center for Quantitative Cell Imaging, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
| |
Collapse
|
40
|
Munisso MC, Saito S, Tsuge I, Morimoto N. Three-dimensional analysis of load-dependent changes in the orientation of dermal collagen fibers in human skin: A pilot study. J Mech Behav Biomed Mater 2023; 138:105585. [PMID: 36435035 DOI: 10.1016/j.jmbbm.2022.105585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/29/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
The availability of quantitative structural data on the orientation of collagen fibers is of crucial importance for understanding the behavior of connective tissues. These fibers can be visualized using a variety of imaging techniques, including second harmonic generation (SHG) microscopy. However, characterization of the collagen network requires the accurate extraction of parameters from imaging data. To this end, several automated processes have been developed to identify the preferred orientation of collagen fibers. Common methods include fast Fourier transforms and curvelet transforms, but these tools are mostly used to infer a single preferred orientation. The purpose of this pilot study was to develop an easy procedure for comprehensively comparing multiple human skin samples with the goal of analyzing load-dependent changes via SHG microscopy. We created a 3D model based upon 2D image stacks that provide fiber orientation data perpendicular and parallel to the plane of the epidermis. The SHG images were analyzed by CurveAlign to obtain angle histogram plots containing information about the multiple fiber orientations in each single image. Subsequently, contour plots of the angle histogram intensities were created to provide a useful visual plotting method to clearly show the anomalies in the angle histograms in all samples. Our results provided additional details on how the collagen network carries a load. In fact, analysis of SHG images indicated that increased stretch was accompanied by an increase in the alignment of fibers in the loading direction. Moreover, these images demonstrated that more than one type of preferred orientation is present. In particular, the 3D network of fibers appears to have two preferred orientations in the planes both perpendicular and parallel to the plane of the epidermis.
Collapse
Affiliation(s)
- Maria Chiara Munisso
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan.
| | - Susumu Saito
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan.
| | - Itaru Tsuge
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
41
|
Bretherton RC, Reichardt IM, Zabrecky KA, Goldstein AJ, Bailey LRJ, Bugg D, McMillen TS, Kooiker KB, Flint GV, Martinson A, Gunaje J, Koser F, Plaster E, Linke WA, Regnier M, Moussavi-Harami F, Sniadecki NJ, DeForest CA, Davis J. Correcting dilated cardiomyopathy with fibroblast-targeted p38 deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.523684. [PMID: 36747691 PMCID: PMC9900749 DOI: 10.1101/2023.01.23.523684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Inherited mutations in contractile and structural genes, which decrease cardiomyocyte tension generation, are principal drivers of dilated cardiomyopathy (DCM)- the leading cause of heart failure 1,2 . Progress towards developing precision therapeutics for and defining the underlying determinants of DCM has been cardiomyocyte centric with negligible attention directed towards fibroblasts despite their role in regulating the best predictor of DCM severity, cardiac fibrosis 3,4 . Given that failure to reverse fibrosis is a major limitation of both standard of care and first in class precision therapeutics for DCM, this study examined whether cardiac fibroblast-mediated regulation of the heart's material properties is essential for the DCM phenotype. Here we report in a mouse model of inherited DCM that prior to the onset of fibrosis and dilated myocardial remodeling both the myocardium and extracellular matrix (ECM) stiffen from switches in titin isoform expression, enhanced collagen fiber alignment, and expansion of the cardiac fibroblast population, which we blocked by genetically suppressing p38α in cardiac fibroblasts. This fibroblast-targeted intervention unexpectedly improved the primary cardiomyocyte defect in contractile function and reversed ECM and dilated myocardial remodeling. Together these findings challenge the long-standing paradigm that ECM remodeling is a secondary complication to inherited defects in cardiomyocyte contractile function and instead demonstrate cardiac fibroblasts are essential contributors to the DCM phenotype, thus suggesting DCM-specific therapeutics will require fibroblast-specific strategies.
Collapse
|
42
|
Plotczyk M, Jiménez F, Limbu S, Boyle CJ, Ovia J, Almquist BD, Higgins CA. Anagen hair follicles transplanted into mature human scars remodel fibrotic tissue. NPJ Regen Med 2023; 8:1. [PMID: 36609660 PMCID: PMC9822907 DOI: 10.1038/s41536-022-00270-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/30/2022] [Indexed: 01/07/2023] Open
Abstract
Despite the substantial impact of skin scarring on patients and the healthcare system, there is a lack of strategies to prevent scar formation, let alone methods to remodel mature scars. Here, we took a unique approach inspired by how healthy hairbearing skin undergoes physiological remodelling during the regular cycling of hair follicles. In this pilot clinical study, we tested if hair follicles transplanted into human scars can facilitate tissue regeneration and actively remodel fibrotic tissue, similar to how they remodel the healthy skin. We collected full-thickness skin biopsies and compared the morphology and transcriptional signature of fibrotic tissue before and after transplantation. We found that hair follicle tranplantation induced an increase in the epidermal thickness, interdigitation of the epidermal-dermal junction, dermal cell density, and blood vessel density. Remodelling of collagen type I fibres reduced the total collagen fraction, the proportion of thick fibres, and their alignment. Consistent with these morphological changes, we found a shift in the cytokine milieu of scars with a long-lasting inhibition of pro-fibrotic factors TGFβ1, IL13, and IL-6. Our results show that anagen hair follicles can attenuate the fibrotic phenotype, providing new insights for developing regenerative approaches to remodel mature scars.
Collapse
Affiliation(s)
- Magdalena Plotczyk
- grid.7445.20000 0001 2113 8111Department of Bioengineering, Imperial College London, London, UK
| | - Francisco Jiménez
- grid.512367.4Mediteknia Skin and Hair Laboratory, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Summik Limbu
- grid.7445.20000 0001 2113 8111Department of Bioengineering, Imperial College London, London, UK
| | - Colin J. Boyle
- grid.7445.20000 0001 2113 8111Department of Bioengineering, Imperial College London, London, UK
| | - Jesse Ovia
- grid.7445.20000 0001 2113 8111Department of Bioengineering, Imperial College London, London, UK
| | - Benjamin D. Almquist
- grid.7445.20000 0001 2113 8111Department of Bioengineering, Imperial College London, London, UK
| | - Claire A. Higgins
- grid.7445.20000 0001 2113 8111Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
43
|
Staab-Weijnitz CA, Onursal C, Nambiar D, Vanacore R. Assessment of Collagen in Translational Models of Lung Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:213-244. [PMID: 37195533 DOI: 10.1007/978-3-031-26625-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The extracellular matrix (ECM) plays an important role in lung health and disease. Collagen is the main component of the lung ECM, widely used for the establishment of in vitro and organotypic models of lung disease, and as scaffold material of general interest for the field of lung bioengineering. Collagen also is the main readout for fibrotic lung disease, where collagen composition and molecular properties are drastically changed and ultimately result in dysfunctional "scarred" tissue. Because of the central role of collagen in lung disease, quantification, determination of molecular properties, and three-dimensional visualization of collagen is important for both development and characterization of translational models of lung research. In this chapter, we provide a comprehensive overview on the various methodologies currently available for quantification and characterization of collagen including their detection principles, advantages, and disadvantages.
Collapse
Affiliation(s)
- Claudia A Staab-Weijnitz
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Member of the German Center for Lung Research (DZL), Ludwig-Maximilians-Universität and Helmholtz Zentrum München, Munich, Germany.
| | - Ceylan Onursal
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Member of the German Center for Lung Research (DZL), Ludwig-Maximilians-Universität and Helmholtz Zentrum München, Munich, Germany
| | - Deepika Nambiar
- Center for Matrix Biology, Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Roberto Vanacore
- Center for Matrix Biology, Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
44
|
Zhu C, Yin L, Xu J, Yang X, Wang H, Xiang X, Liu H, Liu K. Characteristics of Collagen Changes in Small Intestine Anastomoses Induced by High-Frequency Electric Field Welding. Biomolecules 2022; 12:1683. [PMID: 36421697 PMCID: PMC9687556 DOI: 10.3390/biom12111683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 09/02/2023] Open
Abstract
High-frequency electric field welding-induced tissue fusion has been explored as an advanced surgical method for intestinal anastomoses; however, intrinsic mechanisms remain unclear. The aim of this study was to investigate microcosmic changes of collagen within the fusion area, with various parameters. Ex vivo small intestine was fused with mucosa-mucosa. Four levels of compressive pressure (100 kPa, 150 kPa, 200 kPa, 250 kPa) were applied for 10 s in order to fuse the colons under a power level of 140 W. Then, collagen fibers of the fusion area were examined by fibrillar collagen alignment and TEM. Three levels of power (90 W, 110 W, 140 W) and three levels of time (5 s, 10 s, 20 s) were applied in order to fuse colons at 250 kPa, and then collagen within the fusion area was examined by Raman spectroscopy. Fibrillar collagen alignment analysis showed that with the increase in compression pressure, alignment of the collagen in the fusion area gradually increased, and the arrangement of collagen fibers tended to be consistent, which was conducive to the adhesion of collagen fibers. TEM showed that pressure changed the distribution and morphology of collagen fibers. Raman spectroscopy showed that increased power and time within a certain range contributed to collagen cross linking. Peak positions of amide I band and amide III band changed. These results suggested that higher power and a longer amount of time resulted in a decrease in non-reducible cross links and an increase in reducible cross links. Compression pressure, power, and time can affect the state of collagen, but the mechanisms are different. Compressive pressure affected the state of collagen by changing its orientation; power and time denatured collagen by increasing temperature and improved the reducible cross linking of collagen to promote tissue fusion.
Collapse
Affiliation(s)
- Caihui Zhu
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Li Yin
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Jianzhi Xu
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Xingjian Yang
- Academy for Engineering & Technology, Fudan University, Shanghai 200433, China
| | - Hao Wang
- Academy for Engineering & Technology, Fudan University, Shanghai 200433, China
| | - Xiaowei Xiang
- Academy for Engineering & Technology, Fudan University, Shanghai 200433, China
| | - Haotian Liu
- Academy for Engineering & Technology, Fudan University, Shanghai 200433, China
| | - Kefu Liu
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| |
Collapse
|
45
|
Boëté Q, Lo M, Liu KL, Vial G, Lemarié E, Rougelot M, Steuckardt I, Harki O, Couturier A, Gaucher J, Bouyon S, Demory A, Boutin-Paradis A, El Kholti N, Berthier A, Pépin JL, Briançon-Marjollet A, Lambert E, Debret R, Faury G. Physiological Impact of a Synthetic Elastic Protein in Arterial Diseases Related to Alterations of Elastic Fibers: Effect on the Aorta of Elastin-Haploinsufficient Male and Female Mice. Int J Mol Sci 2022; 23:13464. [PMID: 36362244 PMCID: PMC9656458 DOI: 10.3390/ijms232113464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 09/08/2024] Open
Abstract
Elastic fibers, made of elastin (90%) and fibrillin-rich microfibrils (10%), are the key extracellular components, which endow the arteries with elasticity. The alteration of elastic fibers leads to cardiovascular dysfunctions, as observed in elastin haploinsufficiency in mice (Eln+/-) or humans (supravalvular aortic stenosis or Williams-Beuren syndrome). In Eln+/+ and Eln+/- mice, we evaluated (arteriography, histology, qPCR, Western blots and cell cultures) the beneficial impact of treatment with a synthetic elastic protein (SEP), mimicking several domains of tropoelastin, the precursor of elastin, including hydrophobic elasticity-related domains and binding sites for elastin receptors. In the aorta or cultured aortic smooth muscle cells from these animals, SEP treatment induced a synthesis of elastin and fibrillin-1, a thickening of the aortic elastic lamellae, a decrease in wall stiffness and/or a strong trend toward a reduction in the elastic lamella disruptions in Eln+/- mice. SEP also modified collagen conformation and transcript expressions, enhanced the aorta constrictive response to phenylephrine in several animal groups, and, in female Eln+/- mice, it restored the normal vasodilatory response to acetylcholine. SEP should now be considered as a biomimetic molecule with an interesting potential for future treatments of elastin-deficient patients with altered arterial structure/function.
Collapse
Affiliation(s)
- Quentin Boëté
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, U1300, 38000 Grenoble, France
| | - Ming Lo
- Institut de Biologie et Chimie des Protéines UMR5305-LBTI, CNRS, Lyon-7, Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Kiao-Ling Liu
- Institut de Biologie et Chimie des Protéines UMR5305-LBTI, CNRS, Lyon-7, Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Guillaume Vial
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, U1300, 38000 Grenoble, France
| | - Emeline Lemarié
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, U1300, 38000 Grenoble, France
| | - Maxime Rougelot
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, U1300, 38000 Grenoble, France
| | - Iris Steuckardt
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, U1300, 38000 Grenoble, France
| | - Olfa Harki
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, U1300, 38000 Grenoble, France
| | - Axel Couturier
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, U1300, 38000 Grenoble, France
| | - Jonathan Gaucher
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, U1300, 38000 Grenoble, France
| | - Sophie Bouyon
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, U1300, 38000 Grenoble, France
| | - Alexandra Demory
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, U1300, 38000 Grenoble, France
| | - Antoine Boutin-Paradis
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, U1300, 38000 Grenoble, France
| | - Naima El Kholti
- Institut de Biologie et Chimie des Protéines UMR5305-LBTI, CNRS, Lyon-7, Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Aurore Berthier
- Institut de Biologie et Chimie des Protéines UMR5305-LBTI, CNRS, Lyon-7, Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Jean-Louis Pépin
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, U1300, 38000 Grenoble, France
| | | | - Elise Lambert
- Institut de Biologie et Chimie des Protéines UMR5305-LBTI, CNRS, Lyon-7, Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Romain Debret
- Institut de Biologie et Chimie des Protéines UMR5305-LBTI, CNRS, Lyon-7, Passage du Vercors, CEDEX 07, 69367 Lyon, France
| | - Gilles Faury
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, U1300, 38000 Grenoble, France
| |
Collapse
|
46
|
Piñeiro-Llanes J, Suzuki-Hatano S, Jain A, Pérez Medina VA, Cade WT, Pacak CA, Simmons CS. Matrix produced by diseased cardiac fibroblasts affects early myotube formation and function. Acta Biomater 2022; 152:100-112. [PMID: 36055608 PMCID: PMC10625442 DOI: 10.1016/j.actbio.2022.08.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/28/2022]
Abstract
The extracellular matrix (ECM) provides both physical and chemical cues that dictate cell function and contribute to muscle maintenance. Muscle cells require efficient mitochondria to satisfy their high energy demand, however, the role the ECM plays in moderating mitochondrial function is not clear. We hypothesized that the ECM produced by stromal cells with mitochondrial dysfunction (Barth syndrome, BTHS) provides cues that contribute to metabolic dysfunction independent of muscle cell health. To test this, we harnessed the ECM production capabilities of human pluripotent stem-cell-derived cardiac fibroblasts (hPSC-CFs) from healthy and BTHS patients to fabricate cell-derived matrices (CDMs) with controlled topography, though we found that matrix composition from healthy versus diseased cells influenced myotube formation independent of alignment cues. To further investigate the effects of matrix composition, we then examined the influence of healthy- and BTHS-derived CDMs on myotube formation and metabolic function. We found that BTHS CDMs induced lower fusion index, lower ATP production, lower mitochondrial membrane potential, and higher ROS generation than the healthy CDMs. These findings imply that BTHS-derived ECM alone contributes to myocyte dysfunction in otherwise healthy cells. Finally, to investigate potential mechanisms, we defined the composition of CDMs produced by hPSC-CFs from healthy and BTHS patients using mass spectrometry and identified 15 ECM and related proteins that were differentially expressed in the BTHS-CDM compared to healthy CDM. Our results highlight that ECM composition affects skeletal muscle formation and metabolic efficiency in otherwise healthy cells, and our methods to generate patient-specific CDMs are a useful tool to investigate the influence of the ECM on disease progression and to investigate variability among diseased patients. STATEMENT OF SIGNIFICANCE: Muscle function requires both efficient metabolism to generate force and structured extracellular matrix (ECM) to transmit force, and we sought to examine the interactions between metabolism and ECM when metabolic disease is present. We fabricated patient-specific cell derived matrices (CDMs) with controlled topographic features to replicate the composition of healthy and mitochondrial-diseased (Barth syndrome) ECM. We found that disease-derived ECM negatively affects metabolic function of otherwise healthy myoblasts, and we identified several proteins in disease-derived ECM that may be mediating this dysfunction. We anticipate that our patient-specific CDM system could be fabricated with other topographies and cell types to study cell functions and diseases of interest beyond mitochondrial dysfunction and, eventually, be applied toward personalized medicine.
Collapse
Affiliation(s)
- Janny Piñeiro-Llanes
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Silveli Suzuki-Hatano
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Ananya Jain
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Valerie A Pérez Medina
- Department of Mechanical Engineering, University of Puerto Rico, Mayaguez 00682, Puerto Rico
| | - William Todd Cade
- Physical Therapy Division, Duke University, 311 Trent Drive, Durham, NC 27710, USA
| | - Christina A Pacak
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA; Neurology Department, Medical School, University of Minnesota, WMBB 4-188 2101 6th Street SE, Minneapolis 55455, USA
| | - Chelsey S Simmons
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Mechanical and Aerospace Engineering Herbert Wertheim College of Engineering, University of Florida.
| |
Collapse
|
47
|
Lin YJ, Chang Chien BY, Lee YH. Injectable and thermoresponsive hybrid hydrogel with Antibacterial, Anti-inflammatory, oxygen Transport, and enhanced cell growth activities for improved diabetic wound healing. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
48
|
van Dongen JA, van Boxtel J, Uguten M, Brouwer LA, Vermeulen KM, Melenhorst WB, Niessen FB, Harmsen MC, Stevens HP, van der Lei B. Tissue Stromal Vascular Fraction Improves Early Scar Healing: A Prospective Randomized Multicenter Clinical Trial. Aesthet Surg J 2022; 42:NP477-NP488. [PMID: 34967864 DOI: 10.1093/asj/sjab431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Wound healing and scar formation depends on a plethora of factors. Given the impact of abnormal scar formation, interventions aimed to improve scar formation would be most advantageous. The tissue stromal vascular fraction (tSVF) of adipose tissue is composed of a heterogenous mixture of cells embedded in extracellular matrix. It contains growth factors and cytokines involved in wound-healing processes, eg, parenchymal proliferation, inflammation, angiogenesis, and matrix remodeling. OBJECTIVES The aim of this study was to investigate the hypothesis that tSVF reduces postsurgical scar formation. METHODS This prospective, double-blind, placebo-controlled, randomized trial was conducted between 2016 and 2020. Forty mammoplasty patients were enrolled and followed for 1 year. At the end of the mammoplasty procedure, all patients received tSVF in the lateral 5 cm of the horizontal scar of 1 breast and a placebo injection in the contralateral breast to serve as an intrapatient control. Primary outcome was scar quality measure by the Patient and Observer Scar Assessment Scale (POSAS). Secondary outcomes were obtained from photographic evaluation and histologic analysis of scar tissue samples. RESULTS Thirty-four of 40 patients completed follow-up. At 6 months postoperation, injection of tSVF had significantly improved postoperative scar appearance as assessed by the POSAS questionnaire. No difference was observed at 12 months postoperation. No improvement was seen based on the evaluation of photographs and histologic analysis of postoperative scars between both groups. CONCLUSIONS Injection of tSVF resulted in improved wound healing and reduced scar formation at 6 months postoperation, without any noticeable advantageous effects seen at 12 months. LEVEL OF EVIDENCE: 2
Collapse
Affiliation(s)
- Joris A van Dongen
- Department of Plastic Surgery, University Medical Center Utrecht , Utrecht , the Netherlands
| | - Joeri van Boxtel
- Department of Plastic Surgery, Catharina Hospital Eindhoven , Eindhoven , the Netherlands
| | - Mustafa Uguten
- Department of Plastic Surgery, Haga Hospital , the Hague , the Netherlands
| | - Linda A Brouwer
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center of Groningen , Groningen , the Netherlands
| | - Karin M Vermeulen
- Department of Epidemiology, University of Groningen and University Medical Center of Groningen , Groningen , the Netherlands
| | - Wynand B Melenhorst
- Department of Plastic Surgery, Diakonessenhuis Utrecht , Utrecht , the Netherlands
| | | | - Martin C Harmsen
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center of Groningen , Groningen , the Netherlands
| | | | - Berend van der Lei
- Department of Plastic Surgery, University of Groningen and University Medical Center of Groningen , Groningen , the Netherlands
| |
Collapse
|
49
|
Chen K, Henn D, Januszyk M, Barrera JA, Noishiki C, Bonham CA, Griffin M, Tevlin R, Carlomagno T, Shannon T, Fehlmann T, Trotsyuk AA, Padmanabhan J, Sivaraj D, Perrault DP, Zamaleeva AI, Mays CJ, Greco AH, Kwon SH, Leeolou MC, Huskins SL, Steele SR, Fischer KS, Kussie HC, Mittal S, Mermin-Bunnell AM, Diaz Deleon NM, Lavin C, Keller A, Longaker MT, Gurtner GC. Disrupting mechanotransduction decreases fibrosis and contracture in split-thickness skin grafting. Sci Transl Med 2022; 14:eabj9152. [PMID: 35584231 DOI: 10.1126/scitranslmed.abj9152] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Burns and other traumatic injuries represent a substantial biomedical burden. The current standard of care for deep injuries is autologous split-thickness skin grafting (STSG), which frequently results in contractures, abnormal pigmentation, and loss of biomechanical function. Currently, there are no effective therapies that can prevent fibrosis and contracture after STSG. Here, we have developed a clinically relevant porcine model of STSG and comprehensively characterized porcine cell populations involved in healing with single-cell resolution. We identified an up-regulation of proinflammatory and mechanotransduction signaling pathways in standard STSGs. Blocking mechanotransduction with a small-molecule focal adhesion kinase (FAK) inhibitor promoted healing, reduced contracture, mitigated scar formation, restored collagen architecture, and ultimately improved graft biomechanical properties. Acute mechanotransduction blockade up-regulated myeloid CXCL10-mediated anti-inflammation with decreased CXCL14-mediated myeloid and fibroblast recruitment. At later time points, mechanical signaling shifted fibroblasts toward profibrotic differentiation fates, and disruption of mechanotransduction modulated mesenchymal fibroblast differentiation states to block those responses, instead driving fibroblasts toward proregenerative, adipogenic states similar to unwounded skin. We then confirmed these two diverging fibroblast transcriptional trajectories in human skin, human scar, and a three-dimensional organotypic model of human skin. Together, pharmacological blockade of mechanotransduction markedly improved large animal healing after STSG by promoting both early, anti-inflammatory and late, regenerative transcriptional programs, resulting in healed tissue similar to unwounded skin. FAK inhibition could therefore supplement the current standard of care for traumatic and burn injuries.
Collapse
Affiliation(s)
- Kellen Chen
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Surgery, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Dominic Henn
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Januszyk
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Janos A Barrera
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chikage Noishiki
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Clark A Bonham
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle Griffin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruth Tevlin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Theresa Carlomagno
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tara Shannon
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Artem A Trotsyuk
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jagannath Padmanabhan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dharshan Sivaraj
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David P Perrault
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alsu I Zamaleeva
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chyna J Mays
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Autumn H Greco
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sun Hyung Kwon
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Melissa C Leeolou
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Savana L Huskins
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sydney R Steele
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katharina S Fischer
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hudson C Kussie
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Smiti Mittal
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alana M Mermin-Bunnell
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nestor M Diaz Deleon
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher Lavin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Michael T Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Geoffrey C Gurtner
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Surgery, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| |
Collapse
|
50
|
Sadri G, Fischer AG, Brittian KR, Elliott E, Nystoriak MA, Uchida S, Wysoczynski M, Leask A, Jones SP, Moore JB. Collagen type XIX regulates cardiac extracellular matrix structure and ventricular function. Matrix Biol 2022; 109:49-69. [PMID: 35346795 PMCID: PMC9161575 DOI: 10.1016/j.matbio.2022.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/13/2022] [Accepted: 03/22/2022] [Indexed: 12/26/2022]
Abstract
The cardiac extracellular matrix plays essential roles in homeostasis and injury responses. Although the role of fibrillar collagens have been thoroughly documented, the functions of non-fibrillar collagen members remain underexplored. These include a distinct group of non-fibrillar collagens, termed, fibril-associated collagens with interrupted triple helices (FACITs). Recent reports of collagen type XIX (encoded by Col19a1) expression in adult heart and evidence of its enhanced expression in cardiac ischemia suggest important functions for this FACIT in cardiac ECM structure and function. Here, we examined the cellular source of collagen XIX in the adult murine heart and evaluated its involvement in ECM structure and ventricular function. Immunodetection of collagen XIX in fractionated cardiovascular cell lineages revealed fibroblasts and smooth muscle cells as the primary sources of collagen XIX in the heart. Based on echocardiographic and histologic analyses, Col19a1 null (Col19a1N/N) mice exhibited reduced systolic function, thinning of left ventricular walls, and increased cardiomyocyte cross-sectional areas-without gross changes in myocardial collagen content or basement membrane morphology. Col19a1N/N cardiac fibroblasts had augmented expression of several enzymes involved in the synthesis and stability of fibrillar collagens, including PLOD1 and LOX. Furthermore, second harmonic generation-imaged ECM derived from Col19a1N/N cardiac fibroblasts, and transmission electron micrographs of decellularized hearts from Col19a1N/N null animals, showed marked reductions in fibrillar collagen structural organization. Col19a1N/N mice also displayed enhanced phosphorylation of focal adhesion kinase (FAK), signifying de-repression of the FAK pathway-a critical mediator of cardiomyocyte hypertrophy. Collectively, we show that collagen XIX, which had a heretofore unknown role in the mammalian heart, participates in the regulation of cardiac structure and function-potentially through modulation of ECM fibrillar collagen structural organization. Further, these data suggest that this FACIT may modify ECM superstructure via acting at the level of the fibroblast to regulate their expression of collagen synthetic and stabilization enzymes.
Collapse
Affiliation(s)
- Ghazal Sadri
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Annalara G Fischer
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kenneth R Brittian
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Erin Elliott
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Matthew A Nystoriak
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Marcin Wysoczynski
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Steven P Jones
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Joseph B Moore
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|