1
|
Casey GR, Stains CI. A fluorescent probe for monitoring PTP-PEST enzymatic activity. Analyst 2020; 145:6713-6718. [PMID: 32812952 DOI: 10.1039/d0an00993h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phosphatase non-receptor type 12 (PTPN12 or PTP-PEST) is a critical regulator of cell migration, acting as a tumor suppressor in cancer. Decreases in PTP-PEST expression correlate with aggressive phenotypes in hepatocellular carcinoma (HCC). Despite the importance of PTP-PEST in cellular signaling, methods to directly monitor its enzymatic activity are lacking. Herein, we report the design, synthesis, and optimization of a probe to directly monitor PTP-PEST enzymatic activity via a fluorescent readout. This activity sensor, termed pPEST1tide, is capable of detecting as little as 0.2 nM recombinant PTP-PEST. In addition, we demonstrate that this probe can selectively report on PTP-PEST activity using a panel of potential off-target enzymes. In the long-term, this activity probe could be utilized to identify small molecule modulators of PTP-PEST activity as well as provide a prognostic readout for HCC.
Collapse
Affiliation(s)
- Garrett R Casey
- Department of Chemistry, University of Nebraska - Lincoln, Lincoln, NE 68588, USA.
| | | |
Collapse
|
2
|
Beck JR, Cabral F, Rasineni K, Casey CA, Harris EN, Stains CI. A Panel of Protein Kinase Chemosensors Distinguishes Different Types of Fatty Liver Disease. Biochemistry 2019; 58:3911-3917. [PMID: 31433166 DOI: 10.1021/acs.biochem.9b00547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The worldwide incidence of fatty liver disease continues to rise, which may account for concurrent increases in the frequencies of more aggressive liver ailments. Given the existence of histologically identical fatty liver disease subtypes, there is a critical need for the identification of methods that can classify disease and potentially predict progression. Herein, we show that a panel of protein kinase chemosensors can distinguish fatty liver disease subtypes. These direct activity measurements highlight distinct differences between histologically identical fatty liver diseases arising from diets rich in fat versus alcohol and identify a previously unreported decrease in p38α activity associated with a high-fat diet. In addition, we have profiled kinase activities in both benign (diet-induced) and progressive (STAM) disease models. These experiments provide temporal insights into kinase activity during disease development and progression. Altogether, this work provides the basis for the future development of clinical diagnostics and potential treatment strategies.
Collapse
Affiliation(s)
- Jon R Beck
- Department of Chemistry , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States
| | - Fatima Cabral
- Department of Biochemistry , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States
| | - Karuna Rasineni
- Division of Gastroenterology-Hepatology , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States.,Research Service, Veterans' Affairs , Nebraska-Western Iowa Health Care System , Omaha , Nebraska 68105 , United States
| | - Carol A Casey
- Division of Gastroenterology-Hepatology , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States.,Research Service, Veterans' Affairs , Nebraska-Western Iowa Health Care System , Omaha , Nebraska 68105 , United States.,Nebraska Center for Integrated Biomolecular Communication , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States
| | - Edward N Harris
- Department of Biochemistry , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States.,Nebraska Center for Integrated Biomolecular Communication , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States.,Cancer Genes and Molecular Regulation Program, Fred & Pamela Buffet Cancer Center , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Cliff I Stains
- Department of Chemistry , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States.,Nebraska Center for Integrated Biomolecular Communication , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States.,Cancer Genes and Molecular Regulation Program, Fred & Pamela Buffet Cancer Center , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States.,Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States
| |
Collapse
|