1
|
Eguchi M, Yoshimura H, Ueda Y, Ozawa T. Split Luciferase-Fragment Reconstitution for Unveiling RNA Localization and Dynamics in Live Cells. ACS Sens 2023; 8:4055-4063. [PMID: 37889477 DOI: 10.1021/acssensors.3c01080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The intracellular distribution and dynamics of RNAs play pivotal roles in various physiological phenomena. The ability to monitor the amount and localization of endogenous RNAs in living cells allows for elucidating the mechanisms of various intracellular events. Protein-based fluorescent RNA probes are now widely used to visualize and analyze RNAs in living cells. However, continuously monitoring the temporal changes in RNA localization and dynamics in living cells is challenging. In this study, we developed a bioluminescent probe for spatiotemporal monitoring of RNAs in living cells by using a split-luciferase reconstitution technique. The probe consists of split fragments of a bioluminescent protein, NanoLuc, connected with RNA-binding protein domains generated from a custom-made mutation of a PUM-HD. The probe showed rapid luminescence intensity changes in response to an increase or decrease in the amount of a target RNA in vitro. In live-cell imaging, temporal alteration of the intracellular distribution of endogenous β-actin mRNA was visualized in response to extracellular stimulation. Furthermore, the application of the probe to the visualization of the specific localization of β-actin mRNA in primary hippocampal neurons was conducted. These results demonstrate the capability of the bioluminescent RNA probe to monitor the changes in localization, dynamics, and the amount of target RNA in living cells.
Collapse
Affiliation(s)
- Masatoshi Eguchi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideaki Yoshimura
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshibumi Ueda
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Imanishi M. Mechanisms and Strategies for Determining m 6 A RNA Modification Sites by Natural and Engineered m 6 A Effector Proteins. Chem Asian J 2022; 17:e202200367. [PMID: 35750635 DOI: 10.1002/asia.202200367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/17/2022] [Indexed: 12/13/2022]
Abstract
N6 -Methyladenosine (m6 A) is the most common internal RNA modification in the consensus sequence of 5'-RRACH-3'. The methyl mark is added by writer proteins (METTL3/METTL14 metyltransferase complex) and removed by eraser proteins (m6 A demethylases; FTO and ALKBH5). Recognition of this methyl mark by m6 A reader proteins leads to changes in RNA metabolism. How the writer and eraser proteins determine their targets is not well-understood, despite the importance of this information in understanding the regulatory mechanisms and physiological roles of m6 A. However, approaches for targeted manipulation of the methylation state at specific sites are being developed. In this review, I summarize the recent findings on the mechanisms of target identification of m6 A regulatory proteins, as well as recent approaches for targeted m6 A modifications.
Collapse
Affiliation(s)
- Miki Imanishi
- Institute for Chemical Research, Kyoto University Gokasho, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
3
|
Yoshimura H. Triple-color single-molecule imaging for analysis of the role of receptor oligomers in signal transduction. Biophys Physicobiol 2022; 19:1-9. [PMID: 35435651 PMCID: PMC8968032 DOI: 10.2142/biophysico.bppb-v19.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/08/2022] [Indexed: 12/01/2022] Open
Abstract
Membrane receptors provide interfaces of various extracellular stimuli to transduce the signal into the cell. Receptors are required to possess such conflicting properties as high sensitivity and noise reduction for the cell to keep its homeostasis and appropriate responses. To understand the mechanisms by which these functions are achieved, single-molecule monitoring of the motilities of receptors and signaling molecules on the plasma membrane is one of the most direct approaches. This review article introduces several recent single-molecule imaging studies of receptors, including the author’s recent work on triple-color single-molecule imaging of G protein-coupled receptors. Based on these researches, advantages and perspectives of the single-molecule imaging approach to solving the mechanisms of receptor functions are illustrated.
Collapse
|
4
|
Yoshimura H. Potential of Single-Molecule Live-Cell Imaging for Chemical Translational Biology. Chembiochem 2021; 22:2941-2945. [PMID: 34254418 DOI: 10.1002/cbic.202100258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/05/2021] [Indexed: 11/11/2022]
Abstract
Single-molecule live-cell imaging is the most direct approach for monitoring the motility of molecules in living cells. Considering the relationship between the motility of molecules and their function, information obtained from single-molecule imaging involves essential clues for understanding the regulatory mechanisms of the processes of target molecules, and translation to applied sciences such as drug discovery. In this Concept, examples of single-molecule imaging studies on G protein-coupled receptors (GPCRs) are mainly introduced, and recent techniques of single-molecule imaging for overcoming the limitation of single-molecule live-cell imaging are discussed. Based on these studies, the prospects of single-molecule imaging will be outlined.
Collapse
Affiliation(s)
- Hideaki Yoshimura
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1130033, Japan
| |
Collapse
|
5
|
Vos PD, Leedman PJ, Filipovska A, Rackham O. Modulation of miRNA function by natural and synthetic RNA-binding proteins in cancer. Cell Mol Life Sci 2019; 76:3745-3752. [PMID: 31165201 PMCID: PMC11105495 DOI: 10.1007/s00018-019-03163-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/02/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
RNA-binding proteins (RBPs) and microRNAs (miRNAs) are the most important regulators of mRNA stability and translation in eukaryotic cells; however, the complex interplay between these systems is only now coming to light. RBPs and miRNAs regulate a unique set of targets in either a positive or negative manner and their regulation is mainly opposed to each other on overlapping targets. In some cases, the levels of RBPs or miRNAs regulate the cellular levels of one another and decreased levels of either results in changes in translation of their targets. There is growing evidence that these regulatory circuits are crucial in the development and progression of cancer; however, the rules underlying synergism and antagonism between miRNAs and RNA-binding proteins remain unclear. Synthetic biology seeks to develop artificial systems to better understand their natural counterparts and to develop new, useful technologies for manipulation of gene expression at the RNA level. The recent development of artificial RNA-binding proteins promises to enable a much greater understanding of the importance of the functional interactions between RNA-binding proteins and miRNAs, as well as enabling their manipulation for therapeutic purposes.
Collapse
Affiliation(s)
- Pascal D Vos
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia
- School of Molecular and Chemical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Peter J Leedman
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia
- Medical School, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia
- School of Molecular and Chemical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, 6009, Australia.
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA, 6102, Australia.
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, 6102, Australia.
| |
Collapse
|