1
|
Hobson CM, Aaron JS. Combining multiple fluorescence imaging techniques in biology: when one microscope is not enough. Mol Biol Cell 2022; 33:tp1. [PMID: 35549314 PMCID: PMC9265156 DOI: 10.1091/mbc.e21-10-0506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 11/11/2022] Open
Abstract
While fluorescence microscopy has proven to be an exceedingly useful tool in bioscience, it is difficult to offer simultaneous high resolution, fast speed, large volume, and good biocompatibility in a single imaging technique. Thus, when determining the image data required to quantitatively test a complex biological hypothesis, it often becomes evident that multiple imaging techniques are necessary. Recent years have seen an explosion in development of novel fluorescence microscopy techniques, each of which features a unique suite of capabilities. In this Technical Perspective, we highlight recent studies to illustrate the benefits, and often the necessity, of combining multiple fluorescence microscopy modalities. We provide guidance in choosing optimal technique combinations to effectively address a biological question. Ultimately, we aim to promote a more well-rounded approach in designing fluorescence microscopy experiments, leading to more robust quantitative insight.
Collapse
Affiliation(s)
- Chad M. Hobson
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Jesse S. Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| |
Collapse
|
2
|
Hou Y, Bai J, Shen X, de Langen O, Li A, Lal S, Dos Remedios CG, Baddeley D, Ruygrok PN, Soeller C, Crossman DJ. Nanoscale Organisation of Ryanodine Receptors and Junctophilin-2 in the Failing Human Heart. Front Physiol 2021; 12:724372. [PMID: 34690801 PMCID: PMC8531480 DOI: 10.3389/fphys.2021.724372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
The disrupted organisation of the ryanodine receptors (RyR) and junctophilin (JPH) is thought to underpin the transverse tubule (t-tubule) remodelling in a failing heart. Here, we assessed the nanoscale organisation of these two key proteins in the failing human heart. Recently, an advanced feature of the t-tubule remodelling identified large flattened t-tubules called t-sheets, that were several microns wide. Previously, we reported that in the failing heart, the dilated t-tubules up to ~1 μm wide had increased collagen, and we hypothesised that the t-sheets would also be associated with collagen deposits. Direct stochastic optical reconstruction microscopy (dSTORM), confocal microscopy, and western blotting were used to evaluate the cellular distribution of excitation-contraction structures in the cardiac myocytes from patients with idiopathic dilated cardiomyopathy (IDCM) compared to myocytes from the non-failing (NF) human heart. The dSTORM imaging of RyR and JPH found no difference in the colocalisation between IDCM and NF myocytes, but there was a higher colocalisation at the t-tubule and sarcolemma compared to the corbular regions. Western blots revealed no change in the JPH expression but did identify a ~50% downregulation of RyR (p = 0.02). The dSTORM imaging revealed a trend for the smaller t-tubular RyR clusters (~24%) and reduced the t-tubular RyR cluster density (~35%) that resulted in a 50% reduction of t-tubular RyR tetramers in the IDCM myocytes (p < 0.01). Confocal microscopy identified the t-sheets in all the IDCM hearts examined and found that they are associated with the reticular collagen fibres within the lumen. However, the size and density of the RyR clusters were similar in the myocyte regions associated with t-sheets and t-tubules. T-tubule remodelling is associated with a reduced RyR expression that may contribute to the reduced excitation-contraction coupling in the failing human heart.
Collapse
Affiliation(s)
- Yufeng Hou
- Department of Physiology, University of Auckland, Auckland, New Zealand.,Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Jizhong Bai
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Xin Shen
- Department of Physiology, University of Auckland, Auckland, New Zealand.,Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Oscar de Langen
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Amy Li
- Department of Pharmacy and Biomedical Science, Health and Engineering, La Trobe University, Bendigo, VIC, Australia
| | - Sean Lal
- Faculty of Medicine and Science, University of Sydney, Sydney, NSW, Australia
| | | | - David Baddeley
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peter N Ruygrok
- Department of Cardiology, Auckland City Hospital, Auckland, New Zealand
| | | | - David J Crossman
- Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Reinhard S, Aufmkolk S, Sauer M, Doose S. Registration and Visualization of Correlative Super-Resolution Microscopy Data. Biophys J 2019; 116:2073-2078. [PMID: 31103233 DOI: 10.1016/j.bpj.2019.04.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 11/28/2022] Open
Abstract
We introduce a method for registration and visualization of correlative super-resolution microscopy images from different microscopy techniques. We established an automated registration procedure based on the generalized Hough transform. We developed a software tool to apply this algorithm and visualize correlated images from structured illumination microscopy (SIM) and direct stochastic optical reconstruction microscopy (dSTORM). To demonstrate the potential of this super-resolution correlator, we visualize the distribution of the presynaptic protein bassoon in the active zones of synapses in the molecular layer of the mouse cerebellum. First, a multiple labeled sample is imaged by SIM, followed by imaging of one of the fluorescent labels by dSTORM. To avoid the use of artificial fiducial markers, we used the signal of Alexa Fluor 647 recorded in switching buffer on the two microscopes for image superposition. We recorded multicolor SIM images in 20-μm thick brain slices to identify synapses in the dendritic system of Purkinje cells and put higher-resolved dSTORM images of the synaptic distribution of bassoon in registry.
Collapse
Affiliation(s)
- Sebastian Reinhard
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany
| | - Sarah Aufmkolk
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany; Department of Neurology & Neurosurgery, Montréal Neurological Institute, Montréal, Québec, Canada; Department of Chemistry, McGill University, Montréal, Québec, Canada
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany.
| | - Sören Doose
- Department of Biotechnology and Biophysics, University of Würzburg, Biocenter, Am Hubland, Würzburg, Germany.
| |
Collapse
|
4
|
Bartle EI, Rao TC, Urner TM, Mattheyses AL. Bridging the gap: Super-resolution microscopy of epithelial cell junctions. Tissue Barriers 2018; 6:e1404189. [PMID: 29420122 PMCID: PMC5823550 DOI: 10.1080/21688370.2017.1404189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 02/02/2023] Open
Abstract
Cell junctions are critical for cell adhesion and communication in epithelial tissues. It is evident that the cellular distribution, size, and architecture of cell junctions play a vital role in regulating function. These details of junction architecture have been challenging to elucidate in part due to the complexity and size of cell junctions. A major challenge in understanding these features is attaining high resolution spatial information with molecular specificity. Fluorescence microscopy allows localization of specific proteins to junctions, but with a resolution on the same scale as junction size, rendering internal protein organization unobtainable. Super-resolution microscopy provides a bridge between fluorescence microscopy and nanoscale approaches, utilizing fluorescent tags to reveal protein organization below the resolution limit. Here we provide a brief introduction to super-resolution microscopy and discuss novel findings into the organization, structure and function of epithelial cell junctions.
Collapse
Affiliation(s)
- Emily I. Bartle
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tejeshwar C. Rao
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tara M. Urner
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexa L. Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|