1
|
Rassul SM, Otsu M, Styles IB, Neely RK, Fulton D. Single-molecule tracking of myelin basic protein during oligodendrocyte differentiation. BIOLOGICAL IMAGING 2023; 3:e24. [PMID: 38510175 PMCID: PMC10951920 DOI: 10.1017/s2633903x23000259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/14/2023] [Accepted: 10/10/2023] [Indexed: 03/22/2024]
Abstract
This study aimed to expand our understanding of myelin basic protein (MBP), a key component of central nervous system myelin, by developing a protocol to track and quantifying individual MBP particles during oligodendrocyte (OL) differentiation. MBP particle directionality, confinement, and diffusion were tracked by rapid TIRF and HILO imaging of Dendra2 tagged MBP in three stages of mouse oligodendroglia: OL precursors, early myelinating OLs, and mature myelinating OLs. The directionality and confinement of MBP particles increased at each stage consistent with progressive transport toward, and recruitment into, emerging myelin structures. Unexpectedly, diffusion data presented a more complex pattern with subpopulations of the most diffusive particles disappearing at the transition between the precursor and early myelinating stage, before reemerging in the membrane sheets of mature OLs. This diversity of particle behaviors, which would be undetectable by conventional ensemble-averaged methods, are consistent with a multifunctional view of MBP involving roles in myelin expansion and compaction.
Collapse
Affiliation(s)
- Sayed M. Rassul
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Physical Sciences of Imaging in the Biomedical Sciences Training Programme, University of Birmingham, Birmingham, UK
| | - Masahiro Otsu
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Braizon Therapeutics, Inc., Kanagawa, Japan
| | - Iain B. Styles
- School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, Belfast, UK
| | - Robert K. Neely
- School of Chemistry, University of Birmingham, Birmingham, UK
| | - Daniel Fulton
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
2
|
Martucci M, Debar L, van den Wildenberg S, Farge G. How to Quantify DNA Compaction by TFAM with Acoustic Force Spectroscopy and Total Internal Reflection Fluorescence Microscopy. Methods Mol Biol 2023; 2615:121-137. [PMID: 36807789 DOI: 10.1007/978-1-0716-2922-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Mitochondrial transcription factor A (TFAM) plays a key role in the organization and compaction of the mitochondrial genome. However, there are only a few simple and accessible methods available to observe and quantify TFAM-dependent DNA compaction. Acoustic Force Spectroscopy (AFS) is a straightforward single-molecule force spectroscopy technique. It allows one to track many individual protein-DNA complexes in parallel and to quantify their mechanical properties. Total internal reflection fluorescence (TIRF) microscopy is a high-throughput single-molecule technique that permits the real-time visualization of the dynamics of TFAM on DNA, parameters inaccessible with classical biochemistry tools. Here we describe, in detail, how to set up, perform, and analyze AFS and TIRF measurements to study DNA compaction by TFAM.
Collapse
Affiliation(s)
- Martial Martucci
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, Clermont-Ferrand, France
| | - Louis Debar
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, Clermont-Ferrand, France
| | - Siet van den Wildenberg
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, Clermont-Ferrand, France.,Université Clermont Auvergne, CNRS, IRD, Université Jean Monnet Saint Etienne, LMV, Clermont-Ferrand, France
| | - Geraldine Farge
- Université Clermont Auvergne, CNRS, Laboratoire de Physique de Clermont, Clermont-Ferrand, France.
| |
Collapse
|
3
|
Shlyapnikov YM, Malakhova EA, Shlyapnikova EA. Rapid Amplification-Free Microarray-Based Ultrasensitive Detection of DNA. Anal Chem 2019; 91:11209-11214. [DOI: 10.1021/acs.analchem.9b02149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuri M. Shlyapnikov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow
Region, 142290, Russia
| | - Ekaterina A. Malakhova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow
Region, 142290, Russia
| | - Elena A. Shlyapnikova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow
Region, 142290, Russia
| |
Collapse
|
4
|
Bagra B, Zhang W, Zeng Z, Mabe T, Wei J. Plasmon-Enhanced Fluorescence of Carbon Nanodots in Gold Nanoslit Cavities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8903-8909. [PMID: 31246484 DOI: 10.1021/acs.langmuir.9b00448] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Carbon nanodots (CNDs) are featured with a wide range of light absorption and excitation-dependent fluorescence. The emission enhancement of CNDs is of great interest for the development of nanophotonics. Although the phenomenon of plasmon-enhanced fluorescence for quantum dots and molecular dyes has been well investigated, rarely has it been reported for CNDs. In this work, a series of plasmonic nanoslit designs were fabricated and utilized for immobilization of CNDs in nanoslits and examination of the best match for plasmonic fluorescence enhancement of CNDs. In concert, to better understand the plasmonic effect on the enhancement, the surface optical field is measured with or without CND immobilization using a hyperspectral imaging system as a comparison, and a semianalytical model is conducted for a quantitative analysis of surface plasmon generation under the plane-wave illumination. Both the fluorescence and surface reflection light intensity enhancement are demonstrated as a function of nanoslit width and are maximized at the 100 nm nanoslit width. The analysis of surface plasmon-exciton coupling of CNDs in the nanoslit area suggests that the enhancement is primarily due to plasmonic light trapping for increased electromagnetic field and plasmon-induced resonance energy transfer. This study suggests that incorporating CNDs in the plasmonic nanoslits may provide a largely enhanced CND-based photoemission system for optical applications.
Collapse
Affiliation(s)
- Bhawna Bagra
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering , University of North Carolina at Greensboro , Greensboro , North Carolina 27401 , United States
| | - Wendi Zhang
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering , University of North Carolina at Greensboro , Greensboro , North Carolina 27401 , United States
| | - Zheng Zeng
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering , University of North Carolina at Greensboro , Greensboro , North Carolina 27401 , United States
| | - Taylor Mabe
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering , University of North Carolina at Greensboro , Greensboro , North Carolina 27401 , United States
| | - Jianjun Wei
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering , University of North Carolina at Greensboro , Greensboro , North Carolina 27401 , United States
| |
Collapse
|
5
|
Sharma KK, Marzinek JK, Tantirimudalige SN, Bond PJ, Wohland T. Single-molecule studies of flavivirus envelope dynamics: Experiment and computation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 143:38-51. [PMID: 30223001 DOI: 10.1016/j.pbiomolbio.2018.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022]
Abstract
Flaviviruses are simple enveloped viruses exhibiting complex structural and functional heterogeneities. Decades of research have provided crucial basic insights, antiviral medication and moderately successful gene therapy trials. The most infectious particle is, however, not always the most abundant one in a population, questioning the utility of classic ensemble-averaging virology approaches. Indeed, viral replication is often not particularly efficient, prone to errors or containing parallel routes. Here, we review different single-molecule sensitive fluorescence methods that are employed to investigate flaviviruses. In particular, we review how (i) time-resolved Förster resonance energy transfer (trFRET) was applied to probe dengue envelope conformations; (ii) FRET-fluorescence correlation spectroscopy to investigate dengue envelope intrinsic dynamics and (iii) single particle tracking to follow the path of dengue viruses in cells. We also discuss how such methods may be supported by molecular dynamics (MD) simulations over a range of spatio-temporal scales, to provide complementary data on the structure and dynamics of flaviviral systems. We describe recent improvements in multiscale MD approaches that allowed the simulation of dengue particle envelopes in near-atomic resolution. We hope this review is an incentive for setting up and applying similar single-molecule studies and combine them with MD simulations to investigate structural dynamics of entire flavivirus particles over the nanosecond-to-millisecond time-scale and follow viruses during infection in cells over milliseconds to minutes.
Collapse
Affiliation(s)
- Kamal Kant Sharma
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Jan K Marzinek
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Sarala Neomi Tantirimudalige
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Peter J Bond
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore.
| | - Thorsten Wohland
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Department of Chemistry, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore.
| |
Collapse
|
6
|
Castell OK, Dijkman PM, Wiseman DN, Goddard AD. Single molecule fluorescence for membrane proteins. Methods 2018; 147:221-228. [PMID: 29857189 DOI: 10.1016/j.ymeth.2018.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 01/01/2023] Open
Abstract
The cell membrane is a complex milieu of lipids and proteins. In order to understand the behaviour of individual molecules is it often desirable to examine them as purified components in in vitro systems. Here, we detail the creation and use of droplet interface bilayers (DIBs) which, when coupled to TIRF microscopy, can reveal spatiotemporal and kinetic information for individual membrane proteins. A number of steps are required including modification of the protein sequence to enable the incorporation of appropriate fluorescent labels, expression and purification of the membrane protein and subsequent labelling. Following creation of DIBs, proteins are spontaneously incorporated into the membrane where they can be imaged via conventional single molecule TIRF approaches. Using this strategy, in conjunction with step-wise photobleaching, FRET and/or single particle tracking, a host of parameters can be determined such as oligomerisation state and dynamic information. We discuss advantages and limitations of this system and offer guidance for successful implementation of these approaches.
Collapse
Affiliation(s)
- Oliver K Castell
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK.
| | - Patricia M Dijkman
- Max Planck Institute for Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany.
| | - Daniel N Wiseman
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Alan D Goddard
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|