1
|
Williams-Fegredo T, Davies L, Knevelman C, Mitrophanous K, Miskin J, Rafiq QA. Development of novel lipoplex formulation methodologies to improve large-scale transient transfection for lentiviral vector manufacture. Mol Ther Methods Clin Dev 2024; 32:101260. [PMID: 38745895 PMCID: PMC11092396 DOI: 10.1016/j.omtm.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Large-scale transient transfection has advanced significantly over the last 20 years, enabling the effective production of a diverse range of biopharmaceutical products, including viral vectors. However, a number of challenges specifically related to transfection reagent stability and transfection complex preparation times remain. New developments and improved transfection technologies are required to ensure that transient gene expression-based bioprocesses can meet the growing demand for viral vectors. In this paper, we demonstrate that the growth of cationic lipid-based liposomes, an essential step in many cationic lipid-based transfection processes, can be controlled through adoption of low pH (pH 6.40 to pH 6.75) and in low salt concentration (0.2× PBS) formulations, facilitating improved control over the nanoparticle growth kinetics and enhancing particle stability. Such complexes retain the ability to facilitate efficient transfection for prolonged periods compared with standard preparation methodologies. These findings have significant industrial applications for the large-scale manufacture of lentiviral vectors for two principal reasons. First, the alternative preparation strategy enables longer liposome incubation times to be used, facilitating effective control in a good manufacturing practices setting. Second, the improvement in particle stability facilitates the setting of wider process operating ranges, which will significantly improve process robustness and maximise batch-to-batch control and product consistency.
Collapse
Affiliation(s)
- Thomas Williams-Fegredo
- Oxford Biomedica (UK) Limited, Windrush Court, Transport Way, Oxford OX4 6LT, UK
- Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Lee Davies
- Oxford Biomedica (UK) Limited, Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - Carol Knevelman
- Oxford Biomedica (UK) Limited, Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | | | - James Miskin
- Oxford Biomedica (UK) Limited, Windrush Court, Transport Way, Oxford OX4 6LT, UK
| | - Qasim A. Rafiq
- Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
2
|
Xing Z, Nguyen TB, Kanai-Bai G, Yamano-Adachi N, Omasa T. Construction of a novel kinetic model for the production process of a CVA6 VLP vaccine in CHO cells. Cytotechnology 2024; 76:69-83. [PMID: 38304624 PMCID: PMC10828271 DOI: 10.1007/s10616-023-00598-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/22/2023] [Indexed: 02/03/2024] Open
Abstract
Bioprocess development benefits from kinetic models in many aspects, including scale-up, optimization, and process understanding. However, current models are unable to simulate the production process of a coxsackievirus A6 (CVA6) virus-like particle (VLP) vaccine using Chinese hamster ovary cell culture. In this study, a novel kinetic model was constructed, correlating (1) cell growth, death, and lysis kinetics, (2) metabolism of major metabolites, and (3) CVA6 VLP production. To construct the model, two batches of a laboratory-scale 2 L bioreactor cell culture were prepared and various pH shift strategies were applied to examine the effect of pH shift. The proposed model described the experimental data under various conditions with high accuracy and quantified the effect of pH shift. Next, cell culture performance with various pH shift timings was predicted by the calibrated model. A trade-off relationship was found between product yield and quality. Consequently, multiple objective optimization was performed by integrating desirability methodology with model simulation. Finally, the optimal operating conditions that balanced product yield and quality were predicted. In general, the proposed model improved the process understanding and enabled in silico process development of a CVA6 VLP vaccine. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-023-00598-8.
Collapse
Affiliation(s)
- Zhou Xing
- Graduate School of Engineering, Osaka University, U1E801, 2-1Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Thao Bich Nguyen
- Graduate School of Engineering, Osaka University, U1E801, 2-1Yamadaoka, Suita, Osaka 565-0871 Japan
- Present Address: Tsukuba Research Laboratories, Eisai Co. Ltd, 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635 Japan
| | - Guirong Kanai-Bai
- Graduate School of Engineering, Osaka University, U1E801, 2-1Yamadaoka, Suita, Osaka 565-0871 Japan
- Institute for Open and Transdisciplinary Research Initiatives, U1E801, 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Noriko Yamano-Adachi
- Graduate School of Engineering, Osaka University, U1E801, 2-1Yamadaoka, Suita, Osaka 565-0871 Japan
- Institute for Open and Transdisciplinary Research Initiatives, U1E801, 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, U1E801, 2-1Yamadaoka, Suita, Osaka 565-0871 Japan
- Institute for Open and Transdisciplinary Research Initiatives, U1E801, 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| |
Collapse
|
3
|
Ou J, Tang Y, Xu J, Tucci J, Borys MC, Khetan A. Recent advances in upstream process development for production of recombinant adeno-associated virus. Biotechnol Bioeng 2024; 121:53-70. [PMID: 37691172 DOI: 10.1002/bit.28545] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/17/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023]
Abstract
Recombinant adeno-associated virus (rAAV) is rapidly emerging as the preferred delivery vehicle for gene therapies, with promising advantages in safety and efficacy. Key challenges in systemic in-vivo rAAV gene therapy applications are the gap in production capabilities versus potential market demand and complex production process. This review summarizes current available information on rAAV upstream manufacturing processes and proposed optimizations for production. The advancements in rAAV production media were reviewed with proposals to speed up the cell culture process development. Furthermore, major methods for genetic element delivery to host cells were summarized with their advantages, limitations, and future directions for optimization. In addition, culture vessel selection criteria were listed based on production cell system, scale, and development stage. Process control at the production step was also outlined with an in-depth understanding of production kinetics and quality control.
Collapse
Affiliation(s)
- Jianfa Ou
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Yawen Tang
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Jianlin Xu
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Julian Tucci
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Michael C Borys
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Anurag Khetan
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| |
Collapse
|
4
|
Reeves PJ. Expression systems for bovine rhodopsin: a review of the progress made in the Khorana laboratory. Biophys Rev 2023; 15:93-101. [PMID: 36909956 PMCID: PMC9995624 DOI: 10.1007/s12551-022-01037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/11/2022] [Indexed: 01/09/2023] Open
Abstract
Here I will review the development of gene expression systems for production of bovine rhodopsin in the Khorana laboratory with particular focus on stable mammalian cell lines made using human embryonic kidney cells (HEK293S). The synthesis of a gene encoding bovine rhodopsin was completed in 1986. This gene was expertly designed with the built-in capacity for DNA duplex cassette replacement mutagenesis which made site-directed mutagenesis relatively straightforward. Intense effort was expended over several years in order to identify a gene expression system capable of producing rhodopsin in milligram amounts as required for biophysical studies. Mammalian expression systems, both transient and stable, were found to be the most favourable based on several criteria including receptor expression levels, correct folding and post translational processing, and capacity for purification of fully functional receptor. Transient expression using COS-1 cells was preferred for routine small-scale production of rhodopsin mutants, while HEK293S stable cell lines were used when milligram amounts of rhodopsin mutants were needed; for example, when conducting NMR studies.
Collapse
Affiliation(s)
- Philip J Reeves
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ Essex UK
| |
Collapse
|
5
|
Berg K, Schäfer VN, Tschorn N, Stitz J. Advanced Establishment of Stable Recombinant Human Suspension Cell Lines Using Genotype-Phenotype Coupling Transposon Vectors. Methods Mol Biol 2020; 2070:351-361. [PMID: 31625106 DOI: 10.1007/978-1-4939-9853-1_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Stable mammalian, namely human, suspension cell lines play a pivotal role in red biotechnology production scenarios for the generation of state-of-the-art biologics. However, selection of genetically modified and highly productive cell populations - prior to the establishment of clonal lines - is often challenging. To overcome this limitation, we first describe an optimized transient transfection protocol using the inexpensive reagent polyethylenimine (PEI) and human 293F cells. Transposon donor vectors derived from Sleeping Beauty encompassing a cassette with the reporter gene encoding for the green fluorescent protein (GFP) coupled with an internal ribosome entry site (IRES) to the expression of puromycin-resistance are employed to readily detect transfected cells. Upon stable transfection in the presence and absence of transposase expression, respectively, and subsequent antibiotic selection, GFP expression using flow cytometry analysis, cell viability, and cell density can be examined over a range of up to 3 weeks. Owing to the integration of high vector copy numbers into the target cell genome, transposase-mediated transposition of transposon donor vectors is instrumental in the faster establishment of recombinant cell population as compared to the classical stable transfection of plasmid DNA.
Collapse
Affiliation(s)
- Karen Berg
- Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, STEPs Institute, TH Köln-University of Applied Sciences, Leverkusen, Germany
- Research Group Translational Hepatology and Stem Cell Biology, Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Vanessa Nicole Schäfer
- Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, STEPs Institute, TH Köln-University of Applied Sciences, Leverkusen, Germany
| | - Natalie Tschorn
- Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, STEPs Institute, TH Köln-University of Applied Sciences, Leverkusen, Germany
| | - Jörn Stitz
- Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, STEPs Institute, TH Köln-University of Applied Sciences, Leverkusen, Germany.
| |
Collapse
|
6
|
Generation of therapeutic antisera for emerging viral infections. NPJ Vaccines 2018; 3:42. [PMID: 30323953 PMCID: PMC6173733 DOI: 10.1038/s41541-018-0082-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/10/2018] [Accepted: 08/10/2018] [Indexed: 01/05/2023] Open
Abstract
The recent Ebola virus outbreak has highlighted the therapeutic potential of antisera and renewed interest in this treatment approach. While human convalescent sera may not be readily available in the early stages of an outbreak, antisera of animal origin can be produced in a short time frame. Here, we compared adjuvanted virus-like particles (VLP) with recombinant modified vaccinia virus Ankara and vesicular stomatitis virus (VSV), both expressing the Ebola virus antigens. The neutralizing antibody titers of rabbits immunized with adjuvanted VLPs were similar to those immunized with the replication-competent VSV, indicating that presentation of the antigen in its native conformation rather than de novo antigen expression is essential for production of functional antibodies. This approach also yielded high-titer antisera against Nipah virus glycoproteins, illustrating that it is transferable to other virus families. Multiple-step immunoglobulin G purification using a two-step 20–40% ammonium sulfate precipitation followed by protein A affinity chromatography resulted in 90% recovery of functionality and sustained in vivo stability. Adjuvanted VLP-based immunization strategies are thus a promising approach for the rapid generation of therapeutic antisera against emerging infections. Passive immunity through the transfer of anti-serum represents the earliest clinical application of antibodies and is still widely used to this day in the form of anti-venoms. Veronika von Messling and colleagues at the Paul Ehrlich Institute investigate the potential of generating neutralizing anti-serum to the emerging viruses Ebola and Nipah. The authors compare different vaccination platforms in mice and rabbits and find that following multiple vaccine challenges, neutralizing antibody titers equivalent to that seen in convalescent patients could be obtained. Purification of the IgG fraction and processing into F(ab’)2 fragments has the potential to significantly reduce xeno-responses yet the authors find that neutralizing capacity is largely retained albeit at the cost of a shorter in vivo half-life. These findings offer the hope of rapidly generating large quantities of neutralizing anti-serum that could be used in a viral outbreak scenario.
Collapse
|
7
|
Lemos MAN, Patiño SFS, Bernardino TC, Coroadinha AS, Soares H, Astray RM, Pereira CA, Jorge SAC. Intracellular Delivery of HCV NS3p gene using vectored particles. J Biotechnol 2018; 274:33-39. [PMID: 29577966 DOI: 10.1016/j.jbiotec.2018.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/18/2018] [Indexed: 02/07/2023]
Abstract
Viral hepatitis caused by the hepatitis C virus (HCV) affects millions of people worldwide. The non-structural protein 3 (NS3), one of the most conserved proteins in HCV, is the target of many therapeutic studies. The NS3 protease domain (NS3p) has a range of cytotoxic T lymphocyte (CTL) epitopes, and synthesizing the protein inside the cells is the most appropriate way to present it to the immune system. We developed a tool to study this kind of presentation, using two vectored particle (VP) systems, one based on the Semliki Forest virus (SFV) and the other on HCV pseudoparticles (HCVpp), both carrying the protease domain of the NS3 gene. In addition to producing the particles, we developed a method to quantify these VPs using qRT-PCR. We produced batches of approximately 2.4 × 104 SFV-NS3p/μL and 4.0 × 102 HCVpp-NS3p/μL. BHK-21 and HuH-7 cells treated with the VPs expressed the NS3 protein, thus showing the functionality of this system.
Collapse
Affiliation(s)
| | | | | | - Ana Sofia Coroadinha
- Cell Line Development and Molecular Biotechnology Laboratory, iBET - Instituto de Biologia Experimental e Tecnológica, Av. República, Qta. do Marquês, Oeiras Portugal
| | - Hugo Soares
- Cell Line Development and Molecular Biotechnology Laboratory, iBET - Instituto de Biologia Experimental e Tecnológica, Av. República, Qta. do Marquês, Oeiras Portugal
| | - Renato Mancini Astray
- Laboratório de Imunologia Viral, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo Brazil
| | - Carlos Augusto Pereira
- Laboratório de Imunologia Viral, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo Brazil
| | - Soraia Attie Calil Jorge
- Laboratório de Imunologia Viral, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo Brazil.
| |
Collapse
|