1
|
Widmalm G. Glycan Shape, Motions, and Interactions Explored by NMR Spectroscopy. JACS AU 2024; 4:20-39. [PMID: 38274261 PMCID: PMC10807006 DOI: 10.1021/jacsau.3c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024]
Abstract
Glycans in the form of oligosaccharides, polysaccharides, and glycoconjugates are ubiquitous in nature, and their structures range from linear assemblies to highly branched and decorated constructs. Solution state NMR spectroscopy facilitates elucidation of preferred conformations and shapes of the saccharides, motions, and dynamic aspects related to processes over time as well as the study of transient interactions with proteins. Identification of intermolecular networks at the atomic level of detail in recognition events by carbohydrate-binding proteins known as lectins, unraveling interactions with antibodies, and revealing substrate scope and action of glycosyl transferases employed for synthesis of oligo- and polysaccharides may efficiently be analyzed by NMR spectroscopy. By utilizing NMR active nuclei present in glycans and derivatives thereof, including isotopically enriched compounds, highly detailed information can be obtained by the experiments. Subsequent analysis may be aided by quantum chemical calculations of NMR parameters, machine learning-based methodologies and artificial intelligence. Interpretation of the results from NMR experiments can be complemented by extensive molecular dynamics simulations to obtain three-dimensional dynamic models, thereby clarifying molecular recognition processes involving the glycans.
Collapse
Affiliation(s)
- Göran Widmalm
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
2
|
Wang Z, Pisano S, Ghini V, Kadeřávek P, Zachrdla M, Pelupessy P, Kazmierczak M, Marquardsen T, Tyburn JM, Bouvignies G, Parigi G, Luchinat C, Ferrage F. Detection of Metabolite-Protein Interactions in Complex Biological Samples by High-Resolution Relaxometry: Toward Interactomics by NMR. J Am Chem Soc 2021; 143:9393-9404. [PMID: 34133154 DOI: 10.1021/jacs.1c01388] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metabolomics, the systematic investigation of metabolites in biological fluids, cells, or tissues, reveals essential information about metabolism and diseases. Metabolites have functional roles in a myriad of biological processes, as substrates and products of enzymatic reactions but also as cofactors and regulators of large numbers of biochemical mechanisms. These functions involve interactions of metabolites with macromolecules. Yet, methods to systematically investigate these interactions are still scarce to date. In particular, there is a need for techniques suited to identify and characterize weak metabolite-macromolecule interactions directly in complex media such as biological fluids. Here, we introduce a method to investigate weak interactions between metabolites and macromolecules in biological fluids. Our approach is based on high-resolution NMR relaxometry and does not require any invasive procedure or separation step. We show that we can detect interactions between small and large molecules in human blood serum and quantify the size of the complex. Our work opens the way for investigations of metabolite (or other small molecules)-protein interactions in biological fluids for interactomics or pharmaceutical applications.
Collapse
Affiliation(s)
- Ziqing Wang
- Laboratoire des Biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Simone Pisano
- Laboratoire des Biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Veronica Ghini
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, 50019 Italy
| | - Pavel Kadeřávek
- Laboratoire des Biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Milan Zachrdla
- Laboratoire des Biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Philippe Pelupessy
- Laboratoire des Biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Morgan Kazmierczak
- Laboratoire des Biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | | | - Jean-Max Tyburn
- Bruker BioSpin, 34 rue de l'Industrie BP 10002, 67166 Cedex Wissembourg, France
| | - Guillaume Bouvignies
- Laboratoire des Biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Giacomo Parigi
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, 50019 Italy
- Magnetic Resonance Center (CERM), University of Florence, via Sacconi 6, Sesto Fiorentino 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Claudio Luchinat
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, 50019 Italy
- Magnetic Resonance Center (CERM), University of Florence, via Sacconi 6, Sesto Fiorentino 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Fabien Ferrage
- Laboratoire des Biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
3
|
Hall AMR, Cartlidge TAA, Pileio G. A temperature-controlled sample shuttle for field-cycling NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 317:106778. [PMID: 32650304 DOI: 10.1016/j.jmr.2020.106778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
We present a design for a temperature-controlled sample shuttle for use in NMR measurements at variable magnetic field strength. Accurate temperature control was achieved using a mixture of water-ethylene glycol as a heat transfer fluid, reducing temperature gradients across the sample to < 0.05 °C and minimising convection. Using the sample shuttle, we show how the longitudinal (T1) and singlet order (TS) relaxation time constants were measured for two molecules capable of supporting long-lived states, with new record lifetimes observed at low field and above ambient temperatures.
Collapse
Affiliation(s)
- Andrew M R Hall
- University of Southampton, Highfield Campus, Southampton SO17 1BJ, United Kingdom
| | - Topaz A A Cartlidge
- University of Southampton, Highfield Campus, Southampton SO17 1BJ, United Kingdom
| | - Giuseppe Pileio
- University of Southampton, Highfield Campus, Southampton SO17 1BJ, United Kingdom.
| |
Collapse
|
4
|
Bolik-Coulon N, Kadeřávek P, Pelupessy P, Dumez JN, Ferrage F, Cousin SF. Theoretical and computational framework for the analysis of the relaxation properties of arbitrary spin systems. Application to high-resolution relaxometry. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 313:106718. [PMID: 32234674 DOI: 10.1016/j.jmr.2020.106718] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
A wide variety of nuclear magnetic resonance experiments rely on the prediction and analysis of relaxation processes. Recently, innovative approaches have been introduced where the sample travels through a broad range of magnetic fields in the course of the experiment, such as dissolution dynamic nuclear polarization or high-resolution relaxometry. Understanding the relaxation properties of nuclear spin systems over orders of magnitude of magnetic fields is essential to rationalize the results of these experiments. For example, during a high-resolution relaxometry experiment, the absence of control of nuclear spin relaxation pathways during the sample transfers and relaxation delays leads to systematic deviations of polarization decays from an ideal mono-exponential decay with the pure longitudinal relaxation rate. These deviations have to be taken into account to describe quantitatively the dynamics of the system. Here, we present computational tools to (1) calculate analytical expressions of relaxation rates for a broad variety of spin systems and (2) use these analytical expressions to correct the deviations arising in high-resolution relaxometry experiments. These tools lead to a better understanding of nuclear spin relaxation, which is required to improve the sensitivity of many pulse sequences, and to better characterize motions in macromolecules.
Collapse
Affiliation(s)
- Nicolas Bolik-Coulon
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Pavel Kadeřávek
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Philippe Pelupessy
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | | | - Fabien Ferrage
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - Samuel F Cousin
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| |
Collapse
|
5
|
Jaseňáková Z, Zapletal V, Padrta P, Zachrdla M, Bolik-Coulon N, Marquardsen T, Tyburn JM, Žídek L, Ferrage F, Kadeřávek P. Boosting the resolution of low-field [Formula: see text] relaxation experiments on intrinsically disordered proteins with triple-resonance NMR. JOURNAL OF BIOMOLECULAR NMR 2020; 74:139-145. [PMID: 31960224 DOI: 10.1007/s10858-019-00298-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Improving our understanding of nanosecond motions in disordered proteins requires the enhanced sampling of the spectral density function obtained from relaxation at low magnetic fields. High-resolution relaxometry and two-field NMR measurements of relaxation have, so far, only been based on the recording of one- or two-dimensional spectra, which provide insufficient resolution for challenging disordered proteins. Here, we introduce a 3D-HNCO-based two-field NMR experiment for measurements of protein backbone [Formula: see text] amide longitudinal relaxation rates. The experiment provides accurate longitudinal relaxation rates at low field (0.33 T in our case) preserving the resolution and sensitivity typical for high-field NMR spectroscopy. Radiofrequency pulses applied on six different radiofrequency channels are used to manipulate the spin system at both fields. The experiment was demonstrated on the C-terminal domain of [Formula: see text] subunit of RNA polymerase from Bacillus subtilis, a protein with highly repetitive amino-acid sequence and very low dispersion of backbone chemical shifts.
Collapse
Affiliation(s)
- Zuzana Jaseňáková
- National Centre for Biomolecular Research, Faculty of Science and Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Vojtěch Zapletal
- National Centre for Biomolecular Research, Faculty of Science and Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Padrta
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Milan Zachrdla
- Laboratoire des Biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Nicolas Bolik-Coulon
- Laboratoire des Biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | | | - Jean-Max Tyburn
- Bruker BioSpin, 34 rue de l'Industrie BP 10002, 67166, Wissembourg Cedex, France
| | - Lukáš Žídek
- National Centre for Biomolecular Research, Faculty of Science and Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Fabien Ferrage
- Laboratoire des Biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
| | - Pavel Kadeřávek
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
6
|
Kadeřávek P, Bolik-Coulon N, Cousin SF, Marquardsen T, Tyburn JM, Dumez JN, Ferrage F. Protein Dynamics from Accurate Low-Field Site-Specific Longitudinal and Transverse Nuclear Spin Relaxation. J Phys Chem Lett 2019; 10:5917-5922. [PMID: 31509419 DOI: 10.1021/acs.jpclett.9b02233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nuclear magnetic relaxation provides invaluable quantitative site-specific information on the dynamics of complex systems. Determining dynamics on nanosecond time scales requires relaxation measurements at low magnetic fields incompatible with high-resolution NMR. Here, we use a two-field NMR spectrometer to measure carbon-13 transverse and longitudinal relaxation rates at a field as low as 0.33 T (proton Larmor frequency 14 MHz) in specifically labeled side chains of the protein ubiquitin. The use of radiofrequency pulses enhances the accuracy of measurements as compared to high-resolution relaxometry approaches, where the sample is moved in the stray field of the superconducting magnet. Importantly, we demonstrate that accurate measurements at a single low magnetic field provide enough information to characterize complex motions on low nanosecond time scales, which opens a new window for the determination of site-specific nanosecond motions in complex systems such as proteins.
Collapse
Affiliation(s)
- Pavel Kadeřávek
- Laboratoire des Biomolécules, LBM, Département de chimie , École normale supérieure , PSL University, Sorbonne Université, CNRS, 75005 Paris , France
| | - Nicolas Bolik-Coulon
- Laboratoire des Biomolécules, LBM, Département de chimie , École normale supérieure , PSL University, Sorbonne Université, CNRS, 75005 Paris , France
| | - Samuel F Cousin
- Laboratoire des Biomolécules, LBM, Département de chimie , École normale supérieure , PSL University, Sorbonne Université, CNRS, 75005 Paris , France
| | | | - Jean-Max Tyburn
- Bruker BioSpin , 34 rue de l'Industrie BP 10002, 67166 Wissembourg Cedex, France
| | | | - Fabien Ferrage
- Laboratoire des Biomolécules, LBM, Département de chimie , École normale supérieure , PSL University, Sorbonne Université, CNRS, 75005 Paris , France
| |
Collapse
|
7
|
Cousin SF, Kadeřávek P, Bolik-Coulon N, Gu Y, Charlier C, Carlier L, Bruschweiler-Li L, Marquardsen T, Tyburn JM, Brüschweiler R, Ferrage F. Time-Resolved Protein Side-Chain Motions Unraveled by High-Resolution Relaxometry and Molecular Dynamics Simulations. J Am Chem Soc 2018; 140:13456-13465. [DOI: 10.1021/jacs.8b09107] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samuel F. Cousin
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Pavel Kadeřávek
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Nicolas Bolik-Coulon
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Yina Gu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Cyril Charlier
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Ludovic Carlier
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Lei Bruschweiler-Li
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, United States
| | | | - Jean-Max Tyburn
- Bruker BioSpin, 34 rue de l’Industrie BP 10002, 67166 Wissembourg Cedex, France
| | - Rafael Brüschweiler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Fabien Ferrage
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|