1
|
Vashisth MK, Hu J, Liu M, Basha SH, Yu C, Huang W. In-Silico discovery of 17alpha-hydroxywithanolide-D as potential neuroprotective allosteric modulator of NMDA receptor targeting Alzheimer's disease. Sci Rep 2024; 14:27908. [PMID: 39537738 PMCID: PMC11560966 DOI: 10.1038/s41598-024-78975-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder marked by cognitive decline, memory impairment, and behavioral alterations. The N-methyl-D-aspartate (NMDA) receptor has emerged as a promising target for AD pharmacotherapy due to its role in the disease's pathogenesis. This study leverages advanced computational methods to screen 80 active constituents of Withania somnifera (Ashwagandha), a traditional herb known for its neuroprotective effects, against the NMDA receptor, using FDA-approved Ifenprodil as a reference. Our blind virtual screening results demonstrated that all tested compounds could bind to various domains of the NMDA receptor, with binding energies ranging from - 4.1 to -11.9 kcal/mol, compared to Ifenprodil's -7.8 kcal/mol. Binding preference analysis revealed 7 compounds bound to the A-chain, 37 to the B-chain, 7 to the C-chain, and 29 to the D-chain of the receptor. Notable binding was observed predominantly at the Amino Terminal Domain (ATD) core site, some at the ATD-Ligand Binding Domain (LBD) interface, and a few at the Transmembrane Domain (TMD). Particularly, 17alpha-hydroxywithanolide D, with a binding energy of -11.9 kcal/mol, emerged as a prime candidate for further investigation. Molecular dynamics simulations of this compound revealed key interactions, including direct hydrogen bonding with residues ASP165, ARG431, THR433, LYS466, and TYR476 on the D-chain, as well as additional hydrophobic and water-bridging interactions. These simulations highlighted the compound's influence on dynamic conformational states of the GluN1b-GluN2B receptor complex, modulating interactions between GluN1b Lys178 and GluN2B Asn184. Furthermore, the compound affected the distance between LBD heterodimers and the tension within the LBD-M30 linker, demonstrating its potential to modulate NMDA receptor activity. This comprehensive study not only underscores the therapeutic promise of Withania somnifera derivatives for AD but also provides a detailed molecular basis for their efficacy, offering valuable insights for targeted drug development and innovative therapeutic strategies against Alzheimer's disease.
Collapse
Affiliation(s)
- Manoj Kumar Vashisth
- Department of Human Anatomy, School of Basic Medicine Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Junkai Hu
- Department of Orthopaedics, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, P. R. China
| | - Mingrui Liu
- Department of Human Anatomy, School of Basic Medicine Sciences, Dali University, 671000, Yunnan, China
| | | | - Chen Yu
- Central Laboratory, Affiliated Hospital of Putian University, Putian University, 351100, Putian, China.
| | - Wenhua Huang
- Department of Human Anatomy, School of Basic Medicine Sciences, Southern Medical University, 510515, Guangzhou, P. R. China.
| |
Collapse
|
2
|
Singh A, Rakshit D, Kumar A, Mishra A, Shukla R. Formulation and Characterization of Silibinin Entrapped Nano-Liquid Crystals for Activity against Aβ 1-42 Neurotoxicity in In-Vivo Model. AAPS PharmSciTech 2024; 25:149. [PMID: 38954224 DOI: 10.1208/s12249-024-02859-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
Silibinin (SIL) Encapsulated Nanoliquid Crystalline (SIL-NLCs) particles were prepared to study neuroprotective effect against amyloid beta (Aβ1-42) neurotoxicity in Balb/c mice model. Theses NLCs were prepared through hot emulsification and probe sonication technique. The pharmacodynamics was investigatigated on Aβ1-42 intracerebroventricular (ICV) injected Balb/c mice. The particle size, zeta potential and drug loading were optimized to be 153 ± 2.5 nm, -21 mV, and 8.2%, respectively. Small angle X-ray (SAXS) and electron microscopy revealed to crystalline shape of SIL-NLCs. Thioflavin T (ThT) fluroscence and circular dichroism (CD) technique were employed to understand monomer inhibition effect of SIL-NLCs on Aβ1-4. In neurobehavioral studies, SIL-NLCs exhibited enhanced mitigation of memory impairment induced on by Aβ1-42 in T-maze and new object recognition test (NORT). Whereas biochemical and histopathological estimation of brain samples showed reduction in level of Aβ1-42 aggregate, acetylcholine esterase (ACHE) and reactive oxygen species (ROS). SIL-NLCs treated animal group showed higher protection against Aβ1-42 toxicity compared to free SIL and Donopezil (DPZ). Therefore SIL-NLCs promises great prospect in neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Ajit Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Debarati Rakshit
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam-781101, India
| | - Ankit Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam-781101, India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam-781101, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, 226002, India.
| |
Collapse
|
3
|
Virtual screening and assessment of anticancer potential of selenium-based compounds against HL-60 and MCF7 cells. Future Med Chem 2020; 12:2191-2207. [PMID: 33243002 DOI: 10.4155/fmc-2020-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Selenium-based compounds have antitumor potential. We used a ligand-based virtual screening analysis to identify selenoglycolicamides with potential antitumor activity. Results & Conclusion: Compounds 3, 6, 7 and 8 were selected for in vitro cytotoxicity tests against various cell lines, according to spectrophotometry results. Compound 3 presented the best cytotoxicity results against a promyelocytic leukemia line (HL-60) and was able to induce cell death at a frequency similar to that observed for doxorubicin. The docking study showed that compound 3 has good interaction energies with the targets caspase-3, 7 and 8, which are components of the apoptotic pathway. These results suggested that selenium has significant pharmacological potential for the selective targeting of tumor cells, inducing molecular and cellular events that culminate in tumor cell death.
Collapse
|
4
|
Rasouli H, Hosseini Ghazvini SMB, Yarani R, Altıntaş A, Jooneghani SGN, Ramalho TC. Deciphering inhibitory activity of flavonoids against tau protein kinases: a coupled molecular docking and quantum chemical study. J Biomol Struct Dyn 2020; 40:411-424. [PMID: 32897165 DOI: 10.1080/07391102.2020.1814868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Today, Alzheimer's disease (AD) is one of the most important neurodegenerative disorders that affected millions of people worldwide. Hundreds of academic investigations highlighted the potential roles of natural metabolites in the cornerstone of AD prevention. Nevertheless, alkaloids are only metabolites that successfully showed promising clinical therapeutic effects on the prevention of AD. In this regard, other plant metabolites such as flavonoids are also considered as promising substances in the improvement of AD complications. The lack of data on molecular mode of action of flavonoids inside brain tissues, and their potential to transport across the blood-brain barrier, a physical hindrance between bloodstream and brain tissues, limited the large-scale application of these compounds for AD therapy programs. Herein, a coupled docking and quantum study was applied to determine the binding mode of flavonoids and three protein kinases involved in the pathogenesis of AD. The results suggested that all docked metabolites showed considerable binding affinity to interact with target receptors, but some compounds possessed higher binding energy values. Because docking simulation cannot entirely reveal the potential roles of ligand substructures in the interaction with target residues, quantum chemical analyses (QCAs) were performed to cover this drawback. Accordingly, QCAs determined that distribution of molecular orbitals have a pivotal function in the determination of the type of reaction between ligands and receptors; therefore, using such quantum chemical descriptors may correct the results of virtual docking outcomes to highlight promising backbones for further developments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hassan Rasouli
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | | - Reza Yarani
- T1D Biology, Department of Clinical Research, Steno Diabetes Center Copenhagen, Denmark
| | - Ali Altıntaş
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Saber Ghafari Nikoo Jooneghani
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran.,Quantum Chemistry Group, Department of Chemistry, Faculty of Sciences, Arak University, Arak, Iran
| | | |
Collapse
|
5
|
Toropova AP, Toropov AA. Application of the Monte Carlo Method for the Prediction of Behavior of Peptides. Curr Protein Pept Sci 2019; 20:1151-1157. [DOI: 10.2174/1389203720666190123163907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/26/2022]
Abstract
Prediction of physicochemical and biochemical behavior of peptides is an important and attractive
task of the modern natural sciences, since these substances have a key role in life processes. The
Monte Carlo technique is a possible way to solve the above task. The Monte Carlo method is a tool with
different applications relative to the study of peptides: (i) analysis of the 3D configurations (conformers);
(ii) establishment of quantitative structure – property / activity relationships (QSPRs/QSARs); and (iii)
development of databases on the biopolymers. Current ideas related to application of the Monte Carlo
technique for studying peptides and biopolymers have been discussed in this review.
Collapse
Affiliation(s)
- Alla P. Toropova
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa 19, 20156 Milano, Italy
| | - Andrey A. Toropov
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa 19, 20156 Milano, Italy
| |
Collapse
|
6
|
Toropova AP, Toropov AA, Benfenati E, Leszczynska D, Leszczynski J. Virtual Screening of Anti-Cancer Compounds: Application of Monte Carlo Technique. Anticancer Agents Med Chem 2019; 19:148-153. [PMID: 30360729 DOI: 10.2174/1871520618666181025122318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/08/2017] [Accepted: 03/21/2018] [Indexed: 01/27/2023]
Abstract
Possibility and necessity of standardization of predictive models for anti-cancer activity are discussed. The hypothesis about rationality of common quantitative analysis of anti-cancer activity and carcinogenicity is developed. Potential of optimal descriptors to be used as a tool to build up predictive models for anti-cancer activity is examined from practical point of view. Various perspectives of application of optimal descriptors are reviewed. Stochastic nature of phenomena which are related to carcinogenic potential of various substances can be successfully detected and interpreted by the Monte Carlo technique. Hypothesises related to practical strategy and tactics of the searching for new anticancer agents are suggested.
Collapse
Affiliation(s)
- Alla P Toropova
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa 19, 20156 Milano, Italy
| | - Andrey A Toropov
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa 19, 20156 Milano, Italy
| | - Emilio Benfenati
- Department of Environmental Health Science, Laboratory of Environmental Chemistry and Toxicology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa 19, 20156 Milano, Italy
| | - Danuta Leszczynska
- Interdisciplinary Nanotoxicity Center, Department of Civil and Environmental; Engineering, Jackson State University, 1325 Lynch Street, Jackson, MS 39217-0510, United States
| | - Jerzy Leszczynski
- Interdisciplinary Nanotoxicity Center, Department of Chemistry and Biochemistry, Jackson State University, 1400 J. R. Lynch Street, P.O. Box 17910, Jackson, MS 39217, United States
| |
Collapse
|