1
|
Baslam M, Mitsui T, Sueyoshi K, Ohyama T. Recent Advances in Carbon and Nitrogen Metabolism in C3 Plants. Int J Mol Sci 2020; 22:E318. [PMID: 33396811 PMCID: PMC7795015 DOI: 10.3390/ijms22010318] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022] Open
Abstract
C and N are the most important essential elements constituting organic compounds in plants. The shoots and roots depend on each other by exchanging C and N through the xylem and phloem transport systems. Complex mechanisms regulate C and N metabolism to optimize plant growth, agricultural crop production, and maintenance of the agroecosystem. In this paper, we cover the recent advances in understanding C and N metabolism, regulation, and transport in plants, as well as their underlying molecular mechanisms. Special emphasis is given to the mechanisms of starch metabolism in plastids and the changes in responses to environmental stress that were previously overlooked, since these changes provide an essential store of C that fuels plant metabolism and growth. We present general insights into the system biology approaches that have expanded our understanding of core biological questions related to C and N metabolism. Finally, this review synthesizes recent advances in our understanding of the trade-off concept that links C and N status to the plant's response to microorganisms.
Collapse
Affiliation(s)
- Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan; (M.B.); (T.M.)
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan; (M.B.); (T.M.)
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| | - Kuni Sueyoshi
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| | - Takuji Ohyama
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
- Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| |
Collapse
|
2
|
Wang X, Li X, Ding J, Long X, Zhang H, Zhang X, Jiang X, Xu T. 3D bioprinted glioma microenvironment for glioma vascularization. J Biomed Mater Res A 2020; 109:915-925. [PMID: 32779363 DOI: 10.1002/jbm.a.37082] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022]
Abstract
Glioblastoma is the most frequently diagnosed primary malignant brain tumor with unfavourable prognosis and high mortality. One of its key features is the extensive abnormal vascular network. Up to now, the mechanism of angiogenesis and the origin of tumor vascularization remain controversial. It is essential to establish an ideal preclinical tumor model to elucidate the mechanism of tumor vascularization, and the role of tumor cells in this process. In this study, both U118 cell and GSC23 cell exhibited good printability and cell proliferation. Compared with 3D-U118, 3D-GSC23 had a greater ability to form cell spheroids, to secrete vascular endothelial growth factor (VEGFA), and to form tubule-like structures in vitro. More importantly, 3D-glioma stem cells (GSC)23 cells had a greater power to transdifferentiate into functional endothelial cells, and blood vessels composed of tumor cells with an abnormal endothelial phenotype was observed in vivo. In summary, 3D bioprinted hydrogel scaffold provided a suitable tumor microenvironment (TME) for glioma cells and GSCs. This bioprinted model supported a novel TME for the research of glioma cells, especially GSCs in glioma vascularization and therapeutic targeting of tumor angiogenesis.
Collapse
Affiliation(s)
- Xuanzhi Wang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Xinda Li
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing, China
| | - Jinju Ding
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, China
| | - Xiaoyan Long
- Department of research and development, East China Institute of Digital Medical Engineering, Shangrao, People's Republic of China
| | - Haitao Zhang
- Department of research and development, East China Institute of Digital Medical Engineering, Shangrao, People's Republic of China
| | - Xinzhi Zhang
- Department of research and development, Medprin Regenerative Medical Technologies Co., Ltd, Shenzhen, People's Republic of China
| | - Xiaochun Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Tao Xu
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing, China.,Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, China
| |
Collapse
|