1
|
Manoutcharian K, Gevorkian G. Shark VNAR phage display libraries: An alternative source for therapeutic and diagnostic recombinant antibody fragments. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108808. [PMID: 37169114 DOI: 10.1016/j.fsi.2023.108808] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
The development of recombinant antibody fragments as promising alternatives to full-length immunoglobulins offers vast opportunities for biomedicine. Antibody fragments have important advantages compared with conventional monoclonal antibodies that make them attractive for the biotech industry: superior stability and solubility, reduced immunogenicity, higher specificity and affinity, capacity to target the hidden epitope and cross the blood-brain barrier, the ability to refold after heat denaturation and inexpensive and easy large-scale production. Different antibody formats such as antigen-binding fragments (Fab), single-chain fragment variable (scFv) consisting of the antigen-binding domains of Ig heavy (VH) and light (VL) chain regions connected by a flexible peptide linker, single-domain antibody fragments (sdAbs) like camelid heavy-chain variable domains (VHHs) and shark variable new antigen receptor (VNARs), and bispecific antibodies (bsAbs) are currently being evaluated as diagnostics or therapeutics in preclinical studies and clinical trials. In the present review, we summarize and discuss studies on VNARs, the smallest recombinant antibody fragment, obtained after the screening of different types of phage display antibody libraries. Results published until March 2023 are discussed.
Collapse
Affiliation(s)
- Karen Manoutcharian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico, DF, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico, DF, Mexico.
| |
Collapse
|
2
|
Kolmar H, Grzeschik J, Könning D, Krah S, Zielonka S. Construction of Semisynthetic Shark vNAR Yeast Surface Display Antibody Libraries. Methods Mol Biol 2023; 2702:227-243. [PMID: 37679622 DOI: 10.1007/978-1-0716-3381-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The adaptive immune system of sharks comprises a unique heavy chain-only antibody isotype, termed immunoglobulin new antigen receptor (IgNAR), in which antigen binding is mediated by a single variable domain, referred to as vNAR. In recent years, efforts were made to harness these domains for biomedical and biotechnological applications particularly due to their high affinity and specificity combined with a small size and high stability. Herein, we describe protocols for the construction of semisynthetic, CDR3-randomized vNAR libraries for the isolation of target-specific paratopes by yeast surface display. Additionally, we provide guidance for affinity maturation of a panel of antigen-enriched vNAR domains through CDR1 diversification of the FACS-selected, antigen-enriched population and sublibrary establishment.
Collapse
Affiliation(s)
- Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany.
| | - Julius Grzeschik
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Doreen Könning
- Antibody-Drug Conjugates and Targeted NBE Therapeutics, Merck KGaA, Darmstadt, Germany
| | - Simon Krah
- Antibody Discovery & Protein Engineering, Merck KGaA, Darmstadt, Germany
| | - Stefan Zielonka
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany.
- Antibody Discovery & Protein Engineering, Merck KGaA, Darmstadt, Germany.
| |
Collapse
|
3
|
Screening and characterization of inhibitory vNAR targeting nanodisc-assembled influenza M2 proteins. iScience 2022; 26:105736. [PMID: 36570769 PMCID: PMC9771723 DOI: 10.1016/j.isci.2022.105736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/16/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Influenza A virus poses a constant challenge to human health. The highly conserved influenza matrix-2 (M2) protein is an attractive target for the development of a universal antibody-based drug. However, screening using antigens with subphysiological conformation in a nonmembrane environment significantly reduces the generation of efficient antibodies. Here, M2(1-46) was incorporated into nanodiscs (M2-nanodiscs) with M2 in a membrane-embedded tetrameric conformation, closely resembling its natural physiological state in the influenza viral envelope. M2-nanodisc generation, an antigen, was followed by Chiloscyllium plagiosum immunization. The functional vNARs were selected by phage display panning strategy from the shark immune library. One of the isolated vNARs, AM2H10, could specifically bind to tetrameric M2 instead of monomeric M2e (the ectodomain of M2 protein). Furthermore, AM2H10 blocked ion influx through amantadine-sensitive and resistant M2 channels. Our findings indicated the possibility of developing functional shark nanobodies against various influenza viruses by targeting the M2 protein.
Collapse
|
4
|
Valdés-Tresanco MS, Molina-Zapata A, Pose AG, Moreno E. Structural Insights into the Design of Synthetic Nanobody Libraries. Molecules 2022; 27:molecules27072198. [PMID: 35408597 PMCID: PMC9000494 DOI: 10.3390/molecules27072198] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022] Open
Abstract
Single domain antibodies from camelids, or nanobodies, are a unique class of antibody fragments with several advantageous characteristics: small monomeric size, high stability and solubility and easy tailoring for multiple applications. Nanobodies are gaining increasing acceptance as diagnostic tools and promising therapeutic agents in cancer and other diseases. While most nanobodies are obtained from immunized animals of the camelid family, a few synthetic nanobody libraries constructed in recent years have shown the capability of generating high quality nanobodies in terms of affinity and stability. Since this synthetic approach has important advantages over the use of animals, the recent advances are indeed encouraging. Here we review over a dozen synthetic nanobody libraries reported so far and discuss the different approaches followed in their construction and validation, with an emphasis on framework and hypervariable loop design as critical issues defining their potential as high-class nanobody sources.
Collapse
Affiliation(s)
- Mario S. Valdés-Tresanco
- Faculty of Basic Sciences, University of Medellin, Medellin 050026, Colombia; (A.M.-Z.); (A.G.P.)
- Correspondence: (M.S.V.-T.); (E.M.)
| | - Andrea Molina-Zapata
- Faculty of Basic Sciences, University of Medellin, Medellin 050026, Colombia; (A.M.-Z.); (A.G.P.)
- Grupo de Micología Médica y Experimental, Corporación para Investigaciones Biológicas (CIB), Medellin 050034, Colombia
| | - Alaín González Pose
- Faculty of Basic Sciences, University of Medellin, Medellin 050026, Colombia; (A.M.-Z.); (A.G.P.)
| | - Ernesto Moreno
- Faculty of Basic Sciences, University of Medellin, Medellin 050026, Colombia; (A.M.-Z.); (A.G.P.)
- Correspondence: (M.S.V.-T.); (E.M.)
| |
Collapse
|
5
|
Liu X, Sui J, Li C, Peng X, Wang Q, Jiang N, Xu Q, Wang L, Lin J, Zhao G. Preparation of a Nanobody Specific to Dectin 1 and Its Anti-inflammatory Effects on Fungal Keratitis. Int J Nanomedicine 2022; 17:537-551. [PMID: 35140463 PMCID: PMC8818967 DOI: 10.2147/ijn.s338974] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Objective To prepare a nanobody specific to dectin 1 and verify its specificity and anti-inflammatory effects on Aspergillus fumigatus keratitis. Methods The nanobody was selected from a high-quality shark-antibody library constructed with phage-display technology. The nanobody was developed in the expression systems of Escherichia coli. Indirect ELISA was used to determine the specificity of the nanobody to recombinant dectin 1 protein. The potential of the nanobody to be recognized and expressed on the surfaces of cells and corneas was detected by immunofluorescence, and its anti-inflammatory effect on A. fumigatus keratitis was further verified. After infection with A. fumigatus, eyes of C57B L/6 mice were treated with nanobodies. Human corneal epithelial cells (HCECs) were pretreated with nanobodies and then incubated with A. fumigatus. Clinical scores and slit-lamp photography were used to assess disease response in mouse corneas. RT-PCR and ELISA were used to evaluate mRNA and protein expression of IL1β and IL6 in both mouse corneas and HCECs. Results The nanobody was successfully expressed through microbial system and showed specific high-affinity binding to recombinant dectin 1. Furthermore, it exhibited specific binding to dectin 1 expressed on the surfaces of cells and recognized dectin 1 in mouse corneas. Importantly, it reduced clinical scores of A. fumigatus keratitis in mice compared with a PBS-treatment group. In addition, it decreased mRNA and protein expression of IL1β and IL6 in infected corneas and HCECs stimulated with A. fumigatus. Conclusion These results suggest that this nanobody can bring about anti-inflammatory effects. This highlights the potential of these nanobodies as innovative therapeutic agents in A. fumigatus.
Collapse
Affiliation(s)
- Xing Liu
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao, People’s Republic of China
| | - Cui Li
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Xudong Peng
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Qian Wang
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Nan Jiang
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Qiang Xu
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Luokai Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, People’s Republic of China
| | - Jing Lin
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Correspondence: Jing Lin; Guiqiu Zhao, Department of Ophthalmology, Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao266003, Shandong, People’s Republic of China, Email ;
| | - Guiqiu Zhao
- Department of Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
6
|
Pandey SS, Kovaleva M, Barelle CJ, Ubah OC. Overview, Generation, and Significance of Variable New Antigen Receptors (VNARs) as a Platform for Drug and Diagnostic Development. Methods Mol Biol 2022; 2446:19-33. [PMID: 35157267 DOI: 10.1007/978-1-0716-2075-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The approval of the first VHH-based drug caplacizumab (anti-von Willebrand factor) has validated a two-decade long commitment in time and research effort to realize the clinical potential of single-domain antibodies. The variable domain (VNAR) of the immunoglobulin new antigen receptor (IgNAR) found in sharks provides an alternative small binding domain to conventional monoclonal antibodies and their fragments and heavy-chain antibody-derived VHHs. Evolutionarily distinct from mammalian antibody variable domains, VNARs have enhanced thermostability and unusual convex paratopes. This predisposition to bind cryptic and recessed epitopes has facilitated both the targeting of new antigens and new (neutralizing) epitopes on existing antigens. Together these unique properties position the VNAR platform as an alternative non-antibody binding domain for therapeutic drug, diagnostic and reagent development. In this introductory chapter, we highlight recent VNAR advancements that further underline the exciting potential of this discovery platform.
Collapse
|
7
|
Shark New Antigen Receptor (IgNAR): Structure, Characteristics and Potential Biomedical Applications. Cells 2021; 10:cells10051140. [PMID: 34066890 PMCID: PMC8151367 DOI: 10.3390/cells10051140] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022] Open
Abstract
Shark is a cartilaginous fish that produces new antigen receptor (IgNAR) antibodies. This antibody is identified with a similar human heavy chain but dissimilar sequences. The variable domain (VNAR) of IgNAR is stable and small in size, these features are desirable for drug discovery. Previous study results revealed the effectiveness of VNAR as a single molecule or a combination molecule to treat diseases both in vivo and in vitro with promising clinical applications. We showed the first evidence of IgNAR alternative splicing from spotted bamboo shark (Chiloscyllium plagiosum), broadening our understanding of the IgNARs characteristics. In this review, we summarize the discoveries on IgNAR with a focus on its advantages for therapeutic development based on its peculiar biochemistry and molecular structure. Proper applications of IgNAR will provide a novel avenue to understand its special presence in cartilaginous fishes as well as designing a number of drugs for undefeated diseases.
Collapse
|
8
|
Macarrón Palacios A, Grzeschik J, Deweid L, Krah S, Zielonka S, Rösner T, Peipp M, Valerius T, Kolmar H. Specific Targeting of Lymphoma Cells Using Semisynthetic Anti-Idiotype Shark Antibodies. Front Immunol 2020; 11:560244. [PMID: 33324393 PMCID: PMC7726437 DOI: 10.3389/fimmu.2020.560244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022] Open
Abstract
The B-cell receptor (BCR) is a key player of the adaptive immune system. It is a unique part of immunoglobulin (Ig) molecules expressed on the surface of B cells. In case of many B-cell lymphomas, the tumor cells express a tumor-specific and functionally active BCR, also known as idiotype. Utilizing the idiotype as target for lymphoma therapy has emerged to be demanding since the idiotype differs from patient to patient. Previous studies have shown that shark-derived antibody domains (vNARs) isolated from a semi-synthetic CDR3-randomized library allow for the rapid generation of anti-idiotype binders. In this study, we evaluated the potential of generating patient-specific binders against the idiotype of lymphomas. To this end, the BCRs of three different lymphoma cell lines SUP-B8, Daudi, and IM-9 were identified, the variable domains were reformatted and the resulting monoclonal antibodies produced. The SUP-B8 BCR served as antigen in fluorescence-activated cell sorting (FACS)-based screening of the yeast-displayed vNAR libraries which resulted after three rounds of screening in the enrichment of antigen-binding vNARs. Five vNARs were expressed as Fc fusion proteins and consequently analyzed for their binding to soluble antigen using biolayer interferometry (BLI) revealing binding constants in the lower single-digit nanomolar range. These variants showed specific binding to the parental SUP-B8 cell line confirming a similar folding of the recombinantly expressed proteins compared with the native cell surface-presented BCR. First initial experiments to utilize the generated vNAR-Fc variants for BCR-clustering to induce apoptosis or ADCC/ADCP did not result in a significant decrease of cell viability. Here, we report an alternative approach for a personalized B-cell lymphoma therapy based on the construction of vNAR-Fc antibody-drug conjugates to enable specific killing of malignant B cells, which may widen the therapeutic window for B-cell lymphoma therapy.
Collapse
Affiliation(s)
- Arturo Macarrón Palacios
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Julius Grzeschik
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Lukas Deweid
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Simon Krah
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Stefan Zielonka
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Thies Rösner
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, UKSH, CAU Kiel, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, UKSH, CAU Kiel, Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Medicine II, UKSH, CAU Kiel, Kiel, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
9
|
Ching KH, Berg K, Morales J, Pedersen D, Harriman WD, Abdiche YN, Leighton PA. Expression of human lambda expands the repertoire of OmniChickens. PLoS One 2020; 15:e0228164. [PMID: 31995598 PMCID: PMC6988971 DOI: 10.1371/journal.pone.0228164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/08/2020] [Indexed: 12/20/2022] Open
Abstract
Most of the approved monoclonal antibodies used in the clinic were initially discovered in mice. However, many targets of therapeutic interest are highly conserved proteins that do not elicit a robust immune response in mice. There is a need for non-mammalian antibody discovery platforms which would allow researchers to access epitopes that are not recognized in mammalian hosts. Recently, we introduced the OmniChicken®, a transgenic animal carrying human VH3-23 and VK3-15 at its immunoglobulin loci. Here, we describe a new version of the OmniChicken which carries VH3-23 and either VL1-44 or VL3-19 at its heavy and light chain loci, respectively. The Vλ-expressing birds showed normal B and T populations in the periphery. A panel of monoclonal antibodies demonstrated comparable epitope coverage of a model antigen compared to both wild-type and Vκ-expressing OmniChickens. Kinetic analysis identified binders in the picomolar range. The Vλ-expressing bird increases the antibody diversity available in the OmniChicken platform, further enabling discovery of therapeutic leads.
Collapse
Affiliation(s)
- Kathryn H. Ching
- Ligand Pharmaceuticals Incorporated, Emeryville, California, United States of America
| | - Kimberley Berg
- Ligand Pharmaceuticals Incorporated, Emeryville, California, United States of America
| | - Jacqueline Morales
- Ligand Pharmaceuticals Incorporated, Emeryville, California, United States of America
| | - Darlene Pedersen
- Ligand Pharmaceuticals Incorporated, Emeryville, California, United States of America
| | - William D. Harriman
- Ligand Pharmaceuticals Incorporated, Emeryville, California, United States of America
| | | | - Philip A. Leighton
- Ligand Pharmaceuticals Incorporated, Emeryville, California, United States of America
| |
Collapse
|
10
|
Roth L, Krah S, Klemm J, Günther R, Toleikis L, Busch M, Becker S, Zielonka S. Isolation of Antigen-Specific VHH Single-Domain Antibodies by Combining Animal Immunization with Yeast Surface Display. Methods Mol Biol 2020; 2070:173-189. [PMID: 31625096 DOI: 10.1007/978-1-4939-9853-1_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In addition to conventional hetero-tetrameric antibodies, the adaptive immune repertoire of camelids comprises the so-called heavy chain-only antibodies devoid of light chains. Consequently, antigen binding is mediated solely by the variable domain of the heavy chain, referred to as VHH. In recent years, these single-domain moieties emerged as promising tools for biotechnological and biomedical applications. In this chapter, we describe the generation of VHH antibody yeast surface display libraries from immunized Alpacas and Lamas as well as the facile isolation of antigen-specific molecules in a convenient fluorescence-activated cell sorting (FACS)-based selection process.
Collapse
Affiliation(s)
- Lukas Roth
- Protein Engineering and Antibody Technologies (PEAT), Merck KGaA, Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies (PEAT), Merck KGaA, Darmstadt, Germany
| | - Janina Klemm
- Protein Engineering and Antibody Technologies (PEAT), Merck KGaA, Darmstadt, Germany
| | - Ralf Günther
- Protein Engineering and Antibody Technologies (PEAT), Merck KGaA, Darmstadt, Germany
| | - Lars Toleikis
- Protein Engineering and Antibody Technologies (PEAT), Merck KGaA, Darmstadt, Germany
| | - Michael Busch
- Discovery Pharmacology, Merck KGaA, Darmstadt, Germany
| | - Stefan Becker
- Protein Engineering and Antibody Technologies (PEAT), Merck KGaA, Darmstadt, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies (PEAT), Merck KGaA, Darmstadt, Germany.
| |
Collapse
|
11
|
Könning D, Zielonka S, Kaempffe A, Jäger S, Kolmar H, Schröter C. Selection and Characterization of Anti-idiotypic Shark Antibody Domains. Methods Mol Biol 2020; 2070:191-209. [PMID: 31625097 DOI: 10.1007/978-1-4939-9853-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The antibody repertoire of cartilaginous fish comprises an additional heavy-chain-only antibody isotype that is referred to as IgNAR (immunoglobulin novel antigen receptor). Its antigen-binding site consists of one single domain (vNAR) that is reportedly able to engage a respective antigen with affinities similar to those achieved by conventional antibodies. While vNAR domains offer a reduced size, which is often favorable for applications in a therapeutic as well as a biotechnological setup, they also exhibit a high physicochemical stability. Together with their ability to target difficult-to-address antigens such as virus particles or toxins, these shark-derived antibody domains seem to be predestined as tools for biotechnological and diagnostic applications. In the following chapter, we will describe the isolation of anti-idiotypic vNAR domains targeting monoclonal antibody paratopes from semi-synthetic, yeast-displayed libraries. Anti-idiotypic vNAR variants could be employed for the characterization of antibody-based therapeutics (such as antibody-drug conjugates) or as positive controls in immunogenicity assays. Peculiarly, when using semi-synthetic vNAR libraries, we found that it is not necessary to deplete the libraries using unrelated antibody targets, which enables a fast and facile screening procedure that exclusively delivers anti-idiotypic binders.
Collapse
Affiliation(s)
- Doreen Könning
- Antibody-Drug Conjugates and Targeted NBE Therapeutics, Merck KGaA, Darmstadt, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies (PEAT), Merck KGaA, Darmstadt, Germany
| | - Anna Kaempffe
- Antibody-Drug Conjugates and Targeted NBE Therapeutics, Merck KGaA, Darmstadt, Germany.,Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Sebastian Jäger
- Antibody-Drug Conjugates and Targeted NBE Therapeutics, Merck KGaA, Darmstadt, Germany.,Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Christian Schröter
- Antibody-Drug Conjugates and Targeted NBE Therapeutics, Merck KGaA, Darmstadt, Germany.
| |
Collapse
|
12
|
Chiu ML, Goulet DR, Teplyakov A, Gilliland GL. Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies (Basel) 2019; 8:antib8040055. [PMID: 31816964 PMCID: PMC6963682 DOI: 10.3390/antib8040055] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Antibodies and antibody-derived macromolecules have established themselves as the mainstay in protein-based therapeutic molecules (biologics). Our knowledge of the structure–function relationships of antibodies provides a platform for protein engineering that has been exploited to generate a wide range of biologics for a host of therapeutic indications. In this review, our basic understanding of the antibody structure is described along with how that knowledge has leveraged the engineering of antibody and antibody-related therapeutics having the appropriate antigen affinity, effector function, and biophysical properties. The platforms examined include the development of antibodies, antibody fragments, bispecific antibody, and antibody fusion products, whose efficacy and manufacturability can be improved via humanization, affinity modulation, and stability enhancement. We also review the design and selection of binding arms, and avidity modulation. Different strategies of preparing bispecific and multispecific molecules for an array of therapeutic applications are included.
Collapse
Affiliation(s)
- Mark L. Chiu
- Drug Product Development Science, Janssen Research & Development, LLC, Malvern, PA 19355, USA
- Correspondence:
| | - Dennis R. Goulet
- Department of Medicinal Chemistry, University of Washington, P.O. Box 357610, Seattle, WA 98195-7610, USA;
| | - Alexey Teplyakov
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| | - Gary L. Gilliland
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| |
Collapse
|
13
|
Feng M, Bian H, Wu X, Fu T, Fu Y, Hong J, Fleming BD, Flajnik MF, Ho M. Construction and next-generation sequencing analysis of a large phage-displayed V NAR single-domain antibody library from six naïve nurse sharks. Antib Ther 2019; 2:1-11. [PMID: 30627698 PMCID: PMC6312525 DOI: 10.1093/abt/tby011] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/27/2018] [Accepted: 11/01/2018] [Indexed: 12/19/2022] Open
Abstract
Background: Shark new antigen receptor variable domain (VNAR) antibodies can bind restricted epitopes that may be inaccessible to conventional antibodies. Methods: Here, we developed a library construction method based on polymerase chain reaction (PCR)-Extension Assembly and Self-Ligation (named "EASeL") to construct a large VNAR antibody library with a size of 1.2 × 1010 from six naïve adult nurse sharks (Ginglymostoma cirratum). Results: The next-generation sequencing analysis of 1.19 million full-length VNARs revealed that this library is highly diversified because it covers all four classical VNAR types (Types I-IV) including 11% of classical Type I and 57% of classical Type II. About 30% of the total VNARs could not be categorized as any of the classical types. The high variability of complementarity determining region (CDR) 3 length and cysteine numbers are important for the diversity of VNARs. To validate the use of the shark VNAR library for antibody discovery, we isolated a panel of VNAR phage binders to cancer therapy-related antigens, including glypican-3, human epidermal growth factor receptor 2 (HER2), and programmed cell death-1 (PD1). Additionally, we identified binders to viral antigens that included the Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS) spike proteins. The isolated shark single-domain antibodies including Type I and Type II VNARs were produced in Escherichia coli and validated for their antigen binding. A Type II VNAR (PE38-B6) has a high affinity (Kd = 10.1 nM) for its antigen. Conclusions: The naïve nurse shark VNAR library is a useful source for isolating single-domain antibodies to a wide range of antigens. The EASeL method may be applicable to the construction of other large diversity gene expression libraries.
Collapse
Affiliation(s)
- Mingqian Feng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Hejiao Bian
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tianyun Fu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ying Fu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jessica Hong
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Bryan D Fleming
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|