1
|
Abstract
In a recent study by Inga V. Leus, Sean R. Roberts, Anhthu Trinh, Edward W. Yu, and Helen I. Zgurskaya (J Bacteriol, 2023, https://doi.org/10.1128/jb.00217-23), it was found that the clinically relevant resistance-nodulation-cell division (RND)-type AdeABC antibiotic efflux pump from Acinetobacter baumannii exhibits close communication between its antibiotic binding sites. Alterations in one of them can have far-reaching impacts on the drug translocation pathway. These insights could reshape our understanding of RND-type efflux pump mechanisms.
Collapse
Affiliation(s)
- Klaas Martinus Pos
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
2
|
Batista Dos Santos W, Souabni H, Picard M. Corseting a tripartite ABC transporter to make it fit for transport. Biochimie 2023; 205:117-123. [PMID: 36442691 DOI: 10.1016/j.biochi.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
ABC transporters have long been known to mediate resistance phenotypes in all kingdoms of life, and ATP-driven tripartite efflux pump from Gram-negative bacteria have attracted increasing interest. We give a special focus on MacAB TolC, a prototypical member of the recently described Type VII ABC transporter superfamily, from Escherichia coli. We provide original experimental evidence for the in vitro, substrate-induced ATPase activity and show a maximal activity when the tripartite pump is fully assembled in lipid nanodiscs. These results are evaluated and interpreted in the context of the structural and functional data that have accumulated over the years.
Collapse
Affiliation(s)
- William Batista Dos Santos
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS UMR 7099, Université Paris Cité, Paris, France; Fondation Edmond de Rothschild pour le développement de la recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France
| | - Hager Souabni
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS UMR 7099, Université Paris Cité, Paris, France; Fondation Edmond de Rothschild pour le développement de la recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France
| | - Martin Picard
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS UMR 7099, Université Paris Cité, Paris, France; Fondation Edmond de Rothschild pour le développement de la recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France.
| |
Collapse
|
3
|
Stevens CM, Babii SO, Pandya AN, Li W, Li Y, Mehla J, Scott R, Hegde P, Prathipati PK, Acharya A, Liu J, Gumbart JC, North J, Jackson M, Zgurskaya HI. Proton transfer activity of the reconstituted Mycobacterium tuberculosis MmpL3 is modulated by substrate mimics and inhibitors. Proc Natl Acad Sci U S A 2022; 119:e2113963119. [PMID: 35858440 PMCID: PMC9335285 DOI: 10.1073/pnas.2113963119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 06/03/2022] [Indexed: 01/21/2023] Open
Abstract
Transporters belonging to the Resistance-Nodulation-cell Division (RND) superfamily of proteins such as Mycobacterium tuberculosis MmpL3 and its analogs are the focus of intense investigations due to their importance in the physiology of Corynebacterium-Mycobacterium-Nocardia species and antimycobacterial drug discovery. These transporters deliver trehalose monomycolates, the precursors of major lipids of the outer membrane, to the periplasm by a proton motive force-dependent mechanism. In this study, we successfully purified, from native membranes, the full-length and the C-terminal truncated M. tuberculosis MmpL3 and Corynebacterium glutamicum CmpL1 proteins and reconstituted them into proteoliposomes. We also generated a series of substrate mimics and inhibitors specific to these transporters, analyzed their activities in the reconstituted proteoliposomes, and carried out molecular dynamics simulations of the model MmpL3 transporter at different pH. We found that all reconstituted proteins facilitate proton translocation across a phospholipid bilayer, but MmpL3 and CmpL1 differ dramatically in their responses to pH and interactions with substrate mimics and indole-2-carboxamide inhibitors. Our results further suggest that some inhibitors abolish the transport activity of MmpL3 and CmpL1 by inhibition of proton translocation.
Collapse
Affiliation(s)
- Casey M. Stevens
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Svitlana O. Babii
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Amitkumar N. Pandya
- School of Pharmacy & Health Professions, Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523
| | - Yupeng Li
- College of Chemistry, Jilin University, 130012 Changchun, China
- Tang Aoqing Honors Program in Science, Jilin University, 130012 Changchun, China
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - Jitender Mehla
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Robyn Scott
- School of Pharmacy & Health Professions, Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178
| | - Pooja Hegde
- School of Pharmacy & Health Professions, Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178
| | - Pavan K. Prathipati
- School of Pharmacy & Health Professions, Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178
| | - Atanu Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - Jinchan Liu
- College of Chemistry, Jilin University, 130012 Changchun, China
- Tang Aoqing Honors Program in Science, Jilin University, 130012 Changchun, China
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - James C. Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - Jeffrey North
- School of Pharmacy & Health Professions, Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
4
|
Rybenkov VV, Zgurskaya HI, Ganguly C, Leus IV, Zhang Z, Moniruzzaman M. The Whole Is Bigger than the Sum of Its Parts: Drug Transport in the Context of Two Membranes with Active Efflux. Chem Rev 2021; 121:5597-5631. [PMID: 33596653 PMCID: PMC8369882 DOI: 10.1021/acs.chemrev.0c01137] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell envelope plays a dual role in the life of bacteria by simultaneously protecting it from a hostile environment and facilitating access to beneficial molecules. At the heart of this ability lie the restrictive properties of the cellular membrane augmented by efflux transporters, which preclude intracellular penetration of most molecules except with the help of specialized uptake mediators. Recently, kinetic properties of the cell envelope came into focus driven on one hand by the urgent need in new antibiotics and, on the other hand, by experimental and theoretical advances in studies of transmembrane transport. A notable result from these studies is the development of a kinetic formalism that integrates the Michaelis-Menten behavior of individual transporters with transmembrane diffusion and offers a quantitative basis for the analysis of intracellular penetration of bioactive compounds. This review surveys key experimental and computational approaches to the investigation of transport by individual translocators and in whole cells, summarizes key findings from these studies and outlines implications for antibiotic discovery. Special emphasis is placed on Gram-negative bacteria, whose envelope contains two separate membranes. This feature sets these organisms apart from Gram-positive bacteria and eukaryotic cells by providing them with full benefits of the synergy between slow transmembrane diffusion and active efflux.
Collapse
Affiliation(s)
- Valentin V Rybenkov
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Inga V Leus
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Zhen Zhang
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Mohammad Moniruzzaman
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
5
|
Souabni H, Batista Dos Santos W, Cece Q, Catoire LJ, Puvanendran D, Bavro VN, Picard M. Quantitative real-time analysis of the efflux by the MacAB-TolC tripartite efflux pump clarifies the role of ATP hydrolysis within mechanotransmission mechanism. Commun Biol 2021; 4:493. [PMID: 33888866 PMCID: PMC8062640 DOI: 10.1038/s42003-021-01997-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Tripartite efflux pumps built around ATP-binding cassette (ABC) transporters are membrane protein machineries that perform vectorial export of a large variety of drugs and virulence factors from Gram negative bacteria, using ATP-hydrolysis as energy source. Determining the number of ATP molecules consumed per transport cycle is essential to understanding the efficiency of substrate transport. Using a reconstituted pump in a membrane mimic environment, we show that MacAB-TolC from Escherichia coli couples substrate transport to ATP-hydrolysis with high efficiency. Contrary to the predictions of the currently prevailing "molecular bellows" model of MacB-operation, which assigns the power stroke to the ATP-binding by the nucleotide binding domains of the transporter, by utilizing a novel assay, we report clear synchronization of the substrate transfer with ATP-hydrolysis, suggesting that at least some of the power stroke for the substrate efflux is provided by ATP-hydrolysis. Our findings narrow down the window for energy consumption step that results in substrate transition into the TolC-channel, expanding the current understanding of the efflux cycle of the MacB-based tripartite assemblies. Based on that we propose a modified model of the MacB cycle within the context of tripartite complex assembly.
Collapse
Affiliation(s)
- Hager Souabni
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS UMR 7099, Université de Paris, Paris, France
- Fondation Edmond de Rothschild pour le développement de la recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France
| | - William Batista Dos Santos
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS UMR 7099, Université de Paris, Paris, France
- Fondation Edmond de Rothschild pour le développement de la recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France
| | - Quentin Cece
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS UMR 7099, Université de Paris, Paris, France
- Fondation Edmond de Rothschild pour le développement de la recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France
| | - Laurent J Catoire
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS UMR 7099, Université de Paris, Paris, France
- Fondation Edmond de Rothschild pour le développement de la recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France
| | - Dhenesh Puvanendran
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS UMR 7099, Université de Paris, Paris, France
- Fondation Edmond de Rothschild pour le développement de la recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | | | - Martin Picard
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, CNRS UMR 7099, Université de Paris, Paris, France.
- Fondation Edmond de Rothschild pour le développement de la recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France.
| |
Collapse
|
6
|
Zgurskaya HI, Walker JK, Parks JM, Rybenkov VV. Multidrug Efflux Pumps and the Two-Faced Janus of Substrates and Inhibitors. Acc Chem Res 2021; 54:930-939. [PMID: 33539084 PMCID: PMC8208102 DOI: 10.1021/acs.accounts.0c00843] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antibiotics are miracle drugs that can cure infectious bacterial diseases. However, their utility is challenged by antibiotic-resistant bacteria emerging in clinics and straining modern medicine and our ways of life. Certain bacteria such as Gram-negative (Gram(-)) and Mycobacteriales species are intrinsically resistant to most clinical antibiotics and can further gain multidrug resistance through mutations and plasmid acquisition. These species stand out by the presence of an additional external lipidic membrane, the outer membrane (OM), that is composed of unique glycolipids. Although formidable, the OM is a passive permeability barrier that can reduce penetration of antibiotics but cannot affect intracellular steady-state concentrations of drugs. The two-membrane envelopes are further reinforced by active efflux transporters that expel antibiotics from cells against their concentration gradients. The major mechanism of antibiotic resistance in Gram(-) pathogens is the active efflux of drugs, which acts synergistically with the low permeability barrier of the OM and other mutational and plasmid-borne mechanisms of antibiotic resistance.The synergy between active efflux and slow uptake offers Gram(-) bacteria an impressive degree of protection from potentially harmful chemicals, but it is also their Achilles heel. Kinetic studies have revealed that even small changes in the efficiency of either of the two factors can have dramatic effects on drug penetration into the cell. In line with these expectations, two major approaches to overcome this antibiotic resistance mechanism are currently being explored: (1) facilitation of antibiotic penetration across the outer membranes and (2) avoidance and inhibition of clinically relevant multidrug efflux pumps. Herein we summarize the progress in the latter approach with a focus on efflux pumps from the resistance-nodulation-division (RND) superfamily. The ability to export various substrates across the OM at the expense of the proton-motive force acting on the inner membrane and the engagement of accessory proteins for their functions are the major mechanistic advantages of these pumps. Both the RND transporters and their accessory proteins are being targeted in the discovery of efflux pump inhibitors, which in combination with antibiotics can potentiate antibacterial activities. We discuss intriguing relationships between substrates and inhibitors of efflux pumps, as these two types of ligands face similar barriers and binding sites in the transporters and accessory proteins and both types of activities often occur with the same chemical scaffold. Several distinct chemical classes of efflux inhibitors have been discovered that are as structurally diverse as the substrates of efflux pumps. Recent mechanistic insights, both empirical and computational, have led to the identification of features that distinguish OM permeators and efflux pump avoiders as well as efflux inhibitors from substrates. These findings suggest a path forward for optimizing the OM permeation and efflux-inhibitory activities in antibiotics and other chemically diverse compounds.
Collapse
Affiliation(s)
- Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - John K Walker
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Jerry M Parks
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Valentin V Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
7
|
Venter H. Reversing resistance to counter antimicrobial resistance in the World Health Organisation's critical priority of most dangerous pathogens. Biosci Rep 2019; 39:BSR20180474. [PMID: 30910848 PMCID: PMC6465202 DOI: 10.1042/bsr20180474] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023] Open
Abstract
The speed at which bacteria develop antimicrobial resistance far outpace drug discovery and development efforts resulting in untreatable infections. The World Health Organisation recently released a list of pathogens in urgent need for the development of new antimicrobials. The organisms that are listed as the most critical priority are all Gram-negative bacteria resistant to the carbapenem class of antibiotics. Carbapenem resistance in these organisms is typified by intrinsic resistance due to the expression of antibiotic efflux pumps and the permeability barrier presented by the outer membrane, as well as by acquired resistance due to the acquisition of enzymes able to degrade β-lactam antibiotics. In this perspective article we argue the case for reversing resistance by targeting these resistance mechanisms - to increase our arsenal of available antibiotics and drastically reduce antibiotic discovery times - as the most effective way to combat antimicrobial resistance in these high priority pathogens.
Collapse
Affiliation(s)
- Henrietta Venter
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
8
|
Greene NP, Kaplan E, Crow A, Koronakis V. Antibiotic Resistance Mediated by the MacB ABC Transporter Family: A Structural and Functional Perspective. Front Microbiol 2018; 9:950. [PMID: 29892271 PMCID: PMC5985334 DOI: 10.3389/fmicb.2018.00950] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022] Open
Abstract
The MacB ABC transporter forms a tripartite efflux pump with the MacA adaptor protein and TolC outer membrane exit duct to expel antibiotics and export virulence factors from Gram-negative bacteria. Here, we review recent structural and functional data on MacB and its homologs. MacB has a fold that is distinct from other structurally characterized ABC transporters and uses a unique molecular mechanism termed mechanotransmission. Unlike other bacterial ABC transporters, MacB does not transport substrates across the inner membrane in which it is based, but instead couples cytoplasmic ATP hydrolysis with transmembrane conformational changes that are used to perform work in the extra-cytoplasmic space. In the MacAB-TolC tripartite pump, mechanotransmission drives efflux of antibiotics and export of a protein toxin from the periplasmic space via the TolC exit duct. Homologous tripartite systems from pathogenic bacteria similarly export protein-like signaling molecules, virulence factors and siderophores. In addition, many MacB-like ABC transporters do not form tripartite pumps, but instead operate in diverse cellular processes including antibiotic sensing, cell division and lipoprotein trafficking.
Collapse
Affiliation(s)
- Nicholas P Greene
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Elise Kaplan
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Allister Crow
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Vassilis Koronakis
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Spectrofluorimetric quantification of antibiotic drug concentration in bacterial cells for the characterization of translocation across bacterial membranes. Nat Protoc 2018; 13:1348-1361. [DOI: 10.1038/nprot.2018.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|