1
|
Kizilboga T, Özden C, Can ND, Onay Ucar E, Dinler Doganay G. Bag-1-mediated HSF1 phosphorylation regulates expression of heat shock proteins in breast cancer cells. FEBS Open Bio 2024; 14:1559-1569. [PMID: 39049197 PMCID: PMC11492399 DOI: 10.1002/2211-5463.13843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/20/2024] [Accepted: 05/29/2024] [Indexed: 07/27/2024] Open
Abstract
According to the World Health Organization in 2022, 2.3 million women were diagnosed with breast cancer. Investigating the interaction networks between Bcl-2-associated athanogene (Bag)-1 and other chaperone proteins may further the current understanding of the regulation of protein homeostasis in breast cancer cells and contribute to the development of treatment options. The present study aimed to determine the interactions between Bag-1 and heat shock proteins (HSPs); namely, HSP90, HSP70 and HSP27, to elucidate their role in promoting heat shock factor-1 (HSF1)-dependent survival of breast cancer cells. HER2-negative (MCF-7) and HER2-positive (BT-474) cell lines were used to examine the impact of Bag-1 expression on HSF1 and HSPs. We demonstrated that Bag-1 overexpression promoted HER2 expression in breast cancer cells, thereby resulting in the concurrent constitutive activation of the HSF1-HSP axis. The activation of HSP results in the stabilization of several tumor-promoting HSP clients such as AKT, mTOR and HSF1 itself, which substantially accelerates tumor development. Our results suggest that Bag-1 can modulate the chaperone activity of HSPs, such as HSP27, by directly or indirectly regulating the phosphorylation of HSF1. This modulation of chaperone activity can influence the activation of genes involved in cellular homeostasis, thereby protecting cells against stress.
Collapse
Affiliation(s)
- Tugba Kizilboga
- Department of Molecular Biology and GeneticsIstanbul Technical UniversityTurkey
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in SciencesIstanbul UniversityTurkey
| | - Can Özden
- Department of Molecular Biology and GeneticsIstanbul Technical UniversityTurkey
| | - Nisan Denizce Can
- Department of Molecular Biology and GeneticsIstanbul Technical UniversityTurkey
| | - Evren Onay Ucar
- Department of Molecular Biology and Genetics, Faculty of SciencesIstanbul UniversityTurkey
| | | |
Collapse
|
2
|
Bonavita R, Di Martino R, Cortone G, Prodomo A, Di Gennaro M, Scerra G, Panico V, Nuzzo S, Salvatore M, Williams SV, Vitale F, Caporaso MG, D’Agostino M, Pisani FM, Fleming A, Renna M. A method for the analysis of the oligomerization profile of the Huntington's disease-associated, aggregation-prone mutant huntingtin protein by isopycnic ultracentrifugation. Front Mol Biosci 2024; 11:1420691. [PMID: 38993838 PMCID: PMC11236693 DOI: 10.3389/fmolb.2024.1420691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
Conformational diseases, such as Alzheimer's, Parkinson's and Huntington's diseases as well as ataxias and fronto-temporal disorders, are part of common class of neurological disorders characterised by the aggregation and progressive accumulation of mutant proteins which display aberrant conformation. In particular, Huntington's disease (HD) is caused by mutations leading to an abnormal expansion in the polyglutamine (poly-Q) tract of the huntingtin protein (HTT), leading to the formation of inclusion bodies in neurons of affected patients. Furthermore, recent experimental evidence is challenging the conventional view of the disease by revealing the ability of mutant HTT to be transferred between cells by means of extracellular vesicles (EVs), allowing the mutant protein to seed oligomers involving both the mutant and wild type forms of the protein. There is still no successful strategy to treat HD. In addition, the current understanding of the biological processes leading to the oligomerization and aggregation of proteins bearing the poly-Q tract has been derived from studies conducted on isolated poly-Q monomers and oligomers, whose structural properties are still unclear and often inconsistent. Here we describe a standardised biochemical approach to analyse by isopycnic ultracentrifugation the oligomerization of the N-terminal fragment of mutant HTT. The dynamic range of our method allows one to detect large and heterogeneous HTT complexes. Hence, it could be harnessed for the identification of novel molecular determinants responsible for the aggregation and the prion-like spreading properties of HTT in the context of HD. Equally, it provides a tool to test novel small molecules or bioactive compounds designed to inhibit the aggregation of mutant HTT.
Collapse
Affiliation(s)
- Raffaella Bonavita
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Rosaria Di Martino
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
- Institute for Endocrinology and Experimental Oncology “G. Salvatore”, National Research Council, Naples, Italy
| | - Giuseppe Cortone
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Antonello Prodomo
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Mariagrazia Di Gennaro
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
- Institute for Endocrinology and Experimental Oncology “G. Salvatore”, National Research Council, Naples, Italy
| | - Gianluca Scerra
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
| | - Valentino Panico
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
| | | | | | - Sarah V. Williams
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Fulvia Vitale
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
| | - Maria Gabriella Caporaso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
| | - Massimo D’Agostino
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
| | - Francesca M. Pisani
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Angeleen Fleming
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Maurizio Renna
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Wang N, Liu X, Liu K, Wang K, Zhang H. Homo-oxidized HSPB1 protects H9c2 cells against oxidative stress via activation of KEAP1/NRF2 signaling pathway. iScience 2023; 26:107443. [PMID: 37575200 PMCID: PMC10415933 DOI: 10.1016/j.isci.2023.107443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 05/02/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Several heat shock proteins are implicated in the endogenous cardioprotective mechanisms, but little is known about the role of heat shock protein beta-1 (HSPB1). This study aims to investigate the oxidation state and role of HSPB1 in cardiomyocytes undergoing oxidative stress and underlying mechanisms. Here, we demonstrate that hydrogen peroxide (H2O2) promotes the homo-oxidation of HSPB1. Cys137 residue of HSPB1 is not only required for it to protect cardiomyocytes against oxidative injury but also modulates its oxidation, phosphorylation at Ser15, and distribution to insoluble cell components after H2O2 treatment. Moreover, Cys137 residue is indispensable for HSPB1 to interact with KEAP1, thus regulating its oxidation and intracellular distribution, subsequently promoting the nuclear translocation of NRF2, and increasing the transcription of GLCM, HMOX1, and TXNRD1. Altogether, these findings provide evidence that Cys137 residue is indispensable for HSPB1 to maintain its redox state and antioxidant activity via activating KEAP1/NRF2 signaling cascade in cardiomyocytes.
Collapse
Affiliation(s)
- Nian Wang
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, P.R. China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, P.R. China
| | - Xiehong Liu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, P.R. China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, P.R. China
| | - Ke Liu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, P.R. China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, P.R. China
| | - Kangkai Wang
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, P.R. China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, P.R. China
| | - Huali Zhang
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan 410078, P.R. China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
4
|
Li X, Ma R, Wu B, Niu Y, Li H, Li D, Xie J, Idris A, Feng R. HSP27 Protein Dampens Encephalomyocarditis Virus Replication by Stabilizing Melanoma Differentiation-Associated Gene 5. Front Microbiol 2021; 12:788870. [PMID: 34899669 PMCID: PMC8664592 DOI: 10.3389/fmicb.2021.788870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/05/2021] [Indexed: 12/28/2022] Open
Abstract
Heat shock proteins (HSPs) are a protein family that respond to physiological stress, such as heat, starvation, and infection. As cellular protein chaperones, they play an important role in protein folding, assembly, and degradation. Though it is well known that HSP27 is involved in a range of viral infections, its role during an encephalomyocarditis virus (EMCV) infection is not known. Here, we report that EMCV degrades HSP27 and that EMCV proteins 2Cpro and 3Apro are primarily responsible for its degradation. Consequently, loss of cellular HSP27 augmented EMCV proliferation, an effect that could be reversed upon HSP27 overexpression. Importantly, we found that HSP27 positively regulated EMCV-triggered type I interferon (IFN) production. Moreover, overexpression of 2Cpro and 3Apro significantly blocked type I IFN production. We also found for the first time that HSP27, as a molecular chaperone, can specifically interact with MDA5 and stabilize the expression of MDA5. Collectively, this study shows that HSP27 dampens EMCV infectivity by positively regulating EMCV-triggered retinoic acid-inducible gene (RIG)-I-like receptor (RLR)/melanoma differentiation-associated gene 5 (MDA5) signal pathway, while EMCV proteins 2Cpro and 3Apro interact with HSP27 and degrade HSP27 protein expression to allow EMCV proliferation. Our findings provide further mechanistic evidence for EMCV partaking in immune escape mechanisms, and that 2Cpro and 3Apro could serve as potential antiviral targets.
Collapse
Affiliation(s)
- Xiangrong Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Ruixian Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Bei Wu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Yuhui Niu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Hongshan Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Dianyu Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Jingying Xie
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Adi Idris
- School of Pharmacy and Medical Science, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
5
|
Quinlan PR, Figeuredo G, Mongan N, Jordan LB, Bray SE, Sreseli R, Ashfield A, Mitsch J, van den Ijssel P, Thompson AM, Quinlan RA. Cluster analyses of the TCGA and a TMA dataset using the coexpression of HSP27 and CRYAB improves alignment with clinical-pathological parameters of breast cancer and suggests different epichaperome influences for each sHSP. Cell Stress Chaperones 2021; 27:177-188. [PMID: 35235182 PMCID: PMC8943080 DOI: 10.1007/s12192-022-01258-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 12/05/2022] Open
Abstract
Our cluster analysis of the Cancer Genome Atlas for co-expression of HSP27 and CRYAB in breast cancer patients identified three patient groups based on their expression level combination (high HSP27 + low CRYAB; low HSP27 + high CRYAB; similar HSP27 + CRYAB). Our analyses also suggest that there is a statistically significant inverse relationship between HSP27 and CRYAB and known clinicopathological markers in breast cancer. Screening an unbiased 248 breast cancer patient tissue microarray (TMA) for the protein expression of HSP27 and phosphorylated HSP27 (HSP27-82pS) with CRYAB also identified three patient groups based on HSP27 and CRYAB expression levels. TMA24 also had recorded clinical-pathological parameters, such as ER and PR receptor status, patient survival, and TP53 mutation status. High HSP27 protein levels were significant with ER and PR expression. HSP27-82pS associated with the best patient survival (Log Rank test). High CRYAB expression in combination with wild-type TP53 was significant for patient survival, but a different patient outcome was observed when mutant TP53 was combined with high CRYAB expression. Our data suggest that HSP27 and CRYAB have different epichaperome influences in breast cancer, but more importantly evidence the value of a cluster analysis that considers their coexpression. Our approach can deliver convergence for archival datasets as well as those from recent treatment and patient cohorts and can align HSP27 and CRYAB expression to important clinical-pathological features of breast cancer.
Collapse
Affiliation(s)
- Philip R Quinlan
- Digital Research Service, University of Nottingham, Nottingham, NG8 1BB, UK
- Dundee Cancer Centre, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
- School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Grazziela Figeuredo
- Digital Research Service, University of Nottingham, Nottingham, NG8 1BB, UK
- School of Computer Science, University of Nottingham, Nottingham, NG8 1BB, UK
| | - Nigel Mongan
- Faculty of Medicine and Health Sciences, Biodiscovery Institute University Park, Nottingham, NG7 2RD, UK
| | - Lee B Jordan
- Dundee Cancer Centre, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
- NHS Tayside, Department of Pathology, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Susan E Bray
- Dundee Cancer Centre, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
- Tayside Tissue Bank Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Roman Sreseli
- Dundee Cancer Centre, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - Alison Ashfield
- Dundee Cancer Centre, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - Jurgen Mitsch
- Digital Research Service, University of Nottingham, Nottingham, NG8 1BB, UK
| | - Paul van den Ijssel
- Faculty of Medicine and Health Sciences, Biodiscovery Institute University Park, Nottingham, NG7 2RD, UK
- , Lelystad, Netherlands
| | - Alastair M Thompson
- Dundee Cancer Centre, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK.
- Dan L Duncan Comprehensive Cancer Center, Houston, TX 77030, USA.
| | - Roy A Quinlan
- Department of Biosciences, The University of Durham, Upper Mountjoy Science Site South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
6
|
Millimeter-wave pulsed heating in vitro: cell mortality and heat shock response. Sci Rep 2019; 9:15249. [PMID: 31649300 PMCID: PMC6813304 DOI: 10.1038/s41598-019-51731-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/28/2019] [Indexed: 02/07/2023] Open
Abstract
Millimeter wave (MMW)-induced heating represents a promising alternative for non-invasive hyperthermia of superficial skin cancer, such as melanoma. Pulsed MMW-induced heating of tumors allows for reaching high peak temperatures without overheating surrounding tissues. Herein, for the first time, we evaluate apoptotic and heat shock responses of melanoma cells exposed in vitro to continuous (CW) or pulsed-wave (PW) amplitude-modulated MMW at 58.4 GHz with the same average temperature rise. Using an ad hoc exposure system, we generated 90 min pulse train with 1.5 s pulse duration, period of 20 s, amplitude of 10 °C, and steady-state temperature at the level of cells of 49.2 °C. The activation of Caspase-3 and phosphorylation of HSP27 were investigated using fluorescence microscopy to monitor the spatial variation of cellular response. Our results demonstrate that, under the considered exposure conditions, Caspase-3 activation was almost 5 times greater following PW exposure compared to CW. The relationship between the PW-induced cellular response and SAR-dependent temperature rise was non-linear. Phosphorylation of HSP27 was 58% stronger for PW compared to CW. It exhibits a plateau for the peak temperature ranging from 47.7 to 49.2 °C. Our results provide an insight into understanding of the cellular response to MMW-induced pulsed heating.
Collapse
|
7
|
Zhang J, Liu J, Wu J, Li W, Chen Z, Yang L. Progression of the role of CRYAB in signaling pathways and cancers. Onco Targets Ther 2019; 12:4129-4139. [PMID: 31239701 PMCID: PMC6553995 DOI: 10.2147/ott.s201799] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/07/2019] [Indexed: 01/18/2023] Open
Abstract
CRYAB is a member of the small heat shock protein family, first discovered in the lens of the eye, and involved in various diseases, such as eye and heart diseases and even cancers, for example, breast cancer, lung cancer, prostate cancer, and ovarian cancer. In addition, CRYAB proteins are involved in a variety of signaling pathways including apoptosis, inflammation, and oxidative stress. This review summarizes the recent progress concerning the role of CRYAB in signaling pathways and diseases. Therefore, the role of CRYAB in signaling pathways and cancers is urgently needed. This article reviews the regulation of CRYAB in the apoptotic inflammatory signaling pathway and its role in cancers progression and as a key role in anti-cancer therapy targeting CRYAB in an effort to improve outcomes for patients with metastatic disease.
Collapse
Affiliation(s)
- JunFei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, People's Republic of China
| | - Jia Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, People's Republic of China
| | - JiaLi Wu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, People's Republic of China
| | - WenFeng Li
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, People's Republic of China
| | - ZhongWei Chen
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, People's Republic of China
| | - LiShan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, People's Republic of China
| |
Collapse
|
8
|
Zhang B, Xie F, Aziz AUR, Shao S, Li W, Deng S, Liao X, Liu B. Heat Shock Protein 27 Phosphorylation Regulates Tumor Cell Migration under Shear Stress. Biomolecules 2019; 9:biom9020050. [PMID: 30704117 PMCID: PMC6406706 DOI: 10.3390/biom9020050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 01/02/2023] Open
Abstract
Heat shock protein 27 (HSP27) is a multifunctional protein that undergoes significant changes in its expression and phosphorylation in response to shear stress stimuli, suggesting that it may be involved in mechanotransduction. However, the mechanism of HSP27 affecting tumor cell migration under shear stress is still not clear. In this study, HSP27-enhanced cyan fluorescent protein (ECFP) and HSP27-Ypet plasmids are constructed to visualize the self-polymerization of HSP27 in living cells based on fluorescence resonance energy transfer technology. The results show that shear stress induces polar distribution of HSP27 to regulate the dynamic structure at the cell leading edge. Shear stress also promotes HSP27 depolymerization to small molecules and then regulates polar actin accumulation and focal adhesion kinase (FAK) polar activation, which further promotes tumor cell migration. This study suggests that HSP27 plays an important role in the regulation of shear stress-induced HeLa cell migration, and it also provides a theoretical basis for HSP27 as a potential drug target for metastasis.
Collapse
Affiliation(s)
- Baohong Zhang
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Fei Xie
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Aziz Ur Rehman Aziz
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Shuai Shao
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Wang Li
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Sha Deng
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Xiaoling Liao
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Bo Liu
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| |
Collapse
|