1
|
Yang R, Zhang H, Chen S, Lou K, Zhou M, Zhang M, Lu R, Zheng C, Li L, Chen Q, Liu Z, Zen K, Yuan Y, Liang H. Quantification of urinary podocyte-derived migrasomes for the diagnosis of kidney disease. J Extracell Vesicles 2024; 13:e12460. [PMID: 38853287 PMCID: PMC11162892 DOI: 10.1002/jev2.12460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Migrasomes represent a recently uncovered category of extracellular microvesicles, spanning a diameter range of 500 to 3000 nm. They are emitted by migrating cells and harbour a diverse array of RNAs and proteins. Migrasomes can be readily identified in bodily fluids like serum and urine, rendering them a valuable non-invasive source for disease diagnosis through liquid biopsy. In this investigation, we introduce a streamlined and effective approach for the capture and quantitative assessment of migrasomes, employing wheat germ agglutinin (WGA)-coated magnetic beads and flow cytometry (referred to as WBFC). Subsequently, we examined the levels of migrasomes in the urine of kidney disease (KD) patients with podocyte injury and healthy volunteers using WBFC. The outcomes unveiled a substantial increase in urinary podocyte-derived migrasome concentrations among individuals with KD with podocyte injury compared to the healthy counterparts. Notably, the urinary podocyte-derived migrasomes were found to express an abundant quantity of phospholipase A2 receptor (PLA2R) proteins. The presence of PLA2R proteins in these migrasomes holds promise for serving as a natural antigen for the quantification of autoantibodies against PLA2R in the serum of patients afflicted by membranous nephropathy. Consequently, our study not only pioneers a novel technique for the isolation and quantification of migrasomes but also underscores the potential of urinary migrasomes as a promising biomarker for the early diagnosis of KD with podocyte injury.
Collapse
Affiliation(s)
- Rong Yang
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life ScienceNanjing UniversityNanjingChina
| | - Heng Zhang
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Si Chen
- Department of NephrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Kaibin Lou
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Meng Zhou
- Department of NephrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling HospitalNanjing University School of MedicineNanjingChina
| | - Rui Lu
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Chunxia Zheng
- National Clinical Research Center of Kidney Diseases, Jinling HospitalNanjing University School of MedicineNanjingChina
| | - Limin Li
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Qihan Chen
- Cancer Center, Faculty of Health SciencesUniversity of MacauMacauSARChina
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling HospitalNanjing University School of MedicineNanjingChina
| | - Ke Zen
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life ScienceNanjing UniversityNanjingChina
| | - Yanggang Yuan
- Department of NephrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Hongwei Liang
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
2
|
Deng S, Wu Y, Huang S, Yang X. Novel insights into the roles of migrasome in cancer. Discov Oncol 2024; 15:166. [PMID: 38748047 PMCID: PMC11096295 DOI: 10.1007/s12672-024-00942-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/18/2024] [Indexed: 05/18/2024] Open
Abstract
Cell migration, a hallmark of cancer malignancy, plays a critical role in cancers. Improperly initiated or misdirected cell migration can lead to invasive metastatic cancer. Migrasomes are newly discovered vesicular cellular organelles produced by migrating cells and depending on cell migration. Four marker proteins [NDST1 (bifunctionalheparan sulfate N-deacetylase/N-sulfotransferase 1), EOGT (Epidermal growth factor domains pecific O-linked N-acetylglucosaminetransferase), CPQ (carboxypeptidase Q), and PIGK (phosphatidylinositol glycan anchor biosynthesis, class K)] of migrasomes were successfully identified. There are three marker proteins (NDST1, PIGK, and EOGT) of migrasome expressed in cancer. In this review, we will discuss the process of migrasome discovery, the formation of migrasome, the possible functions of migrasome, and the differences between migrasomes and exosomes, especially, the biological functions of migrasome marker proteins in cancer, and discuss some possible roles of migrasomes in cancer. We speculate that migrasomes and migracytosis can play key roles in regulating the development of cancer.
Collapse
Affiliation(s)
- Sijun Deng
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang , 421001, Hunan, People's Republic of China
| | - Yiwen Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang , 421001, Hunan, People's Republic of China
| | - Sheng Huang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang , 421001, Hunan, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang , 421001, Hunan, People's Republic of China.
| |
Collapse
|
3
|
Zhang Z, Zhang T, Zhang R, Zhang Z, Tan S. Migrasomes and tetraspanins in hepatocellular carcinoma: current status and future prospects. Future Sci OA 2023; 9:FSO890. [PMID: 37752917 PMCID: PMC10518826 DOI: 10.2144/fsoa-2023-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/24/2023] [Indexed: 09/28/2023] Open
Abstract
In recent years, many studies have attempted to clarify the formation, structure and biological function of migrasomes, which are defined as specialized organelles formed by the tips and intersections of Retraction Fibrils during cell migration. It has confirmed that migrasomes were involved in various critical biological processes and diseases, and has became a new research hotspot. In this paper, we reviewed the formation and biological functions of migrasomes, explored the relationship between migrasomes, tetraspanins and hepatocellular carcinoma and discussed the potential applications of migrasomes in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhongqi Zhang
- Guangxi Key Laboratory of Environmental Exposomics & Entire Lifecycle Health, Guilin Medical University, Guilin, 541004, Guangxi, China
- Department of Epidemiology & Health Statistics, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Tianmiao Zhang
- Guangxi Key Laboratory of Environmental Exposomics & Entire Lifecycle Health, Guilin Medical University, Guilin, 541004, Guangxi, China
- Department of Epidemiology & Health Statistics, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Rongcheng Zhang
- Guangxi Key Laboratory of Environmental Exposomics & Entire Lifecycle Health, Guilin Medical University, Guilin, 541004, Guangxi, China
- Department of Epidemiology & Health Statistics, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Zhengbao Zhang
- Guangxi Key Laboratory of Environmental Exposomics & Entire Lifecycle Health, Guilin Medical University, Guilin, 541004, Guangxi, China
- Department of Epidemiology & Health Statistics, Guilin Medical University, Guilin, 541004, Guangxi, China
| | - Shengkui Tan
- Guangxi Key Laboratory of Environmental Exposomics & Entire Lifecycle Health, Guilin Medical University, Guilin, 541004, Guangxi, China
- Department of Epidemiology & Health Statistics, Guilin Medical University, Guilin, 541004, Guangxi, China
| |
Collapse
|
4
|
Li T, Su X, Lu P, Kang X, Hu M, Li C, Wang S, Lu D, Shen S, Huang H, Liu Y, Deng X, Cai W, Wei L, Lu Z. Bone Marrow Mesenchymal Stem Cell-Derived Dermcidin-Containing Migrasomes enhance LC3-Associated Phagocytosis of Pulmonary Macrophages and Protect against Post-Stroke Pneumonia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2206432. [PMID: 37246283 PMCID: PMC10401184 DOI: 10.1002/advs.202206432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/29/2023] [Indexed: 05/30/2023]
Abstract
Pneumonia is one of the leading causes of death in patients with acute ischemic stroke (AIS). Antibiotics fail to improve prognosis of patients with post-stroke pneumonia, albeit suppressing infection, due to adverse impacts on the immune system. The current study reports that bone marrow mesenchymal stem cells (BM-MSC) downregulate bacterial load in the lungs of stroke mice models. RNA-sequencing of the lung from BM-MSC-treated stroke models indicates that BM-MSC modulates pulmonary macrophage activities after cerebral ischemia. Mechanistically, BM-MSC promotes the bacterial phagocytosis of pulmonary macrophages through releasing migrasomes, which are migration-dependent extracellular vesicles. With liquid chromatography-tandem mass spectrometry (LC-MS/MS), the result shows that BM-MSC are found to load the antibacterial peptide dermcidin (DCD) in migrasomes upon bacterial stimulation. Besides the antibiotic effect, DCD enhances LC3-associated phagocytosis (LAP) of macrophages, facilitating their bacterial clearance. The data demonstrate that BM-MSC is a promising therapeutic candidate against post-stroke pneumonia, with dual functions of anti-infection and immunol modulation, which is more than a match for antibiotics treatment.
Collapse
Affiliation(s)
- Tiemei Li
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Center of Clinical Immunology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaotao Su
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Pinglan Lu
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine Sun Yat-sen University, Guangzhou, 510630, China
| | - Xinmei Kang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Mengyan Hu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Chunyi Li
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Shisi Wang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Danli Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Shishi Shen
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Huipeng Huang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaohui Deng
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Wei Cai
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Center of Clinical Immunology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine Sun Yat-sen University, Guangzhou, 510630, China
| | - Lei Wei
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| |
Collapse
|
5
|
Marki A, Ley K. The expanding family of neutrophil-derived extracellular vesicles. Immunol Rev 2022; 312:52-60. [PMID: 35665941 PMCID: PMC10111154 DOI: 10.1111/imr.13103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022]
Abstract
Neutrophils are immune cells involved in several inflammatory and homeostatic processes. Their capacity to release cargo can be classified based on whether the cargo is released on its own, or in conjunction with plasma membrane structures. Examples of plasma membrane-free secretion modes are degranulation, neutrophil extracellular trap (NET) release, and cytokine release through inflammasome formation. The most studied membrane-covered neutrophil-derived structures are exosomes and ectosomes that are collectively called extracellular vesicles (EV). Apoptotic vesicles are another recognized EV subtype. Over the last decade, additional membrane-covered neutrophil-derived structures were characterized: migratory cytoplasts, migrasomes, and elongated neutrophil-derived structures (ENDS). All these structures are smaller than the neutrophils, cannot reproduce themselves, and thus meet the latest consensus definition of EVs. In this review, we focus on the less well-studied neutrophil EVs: apoptotic vesicles, cytoplasts, migrasomes, and ENDS.
Collapse
Affiliation(s)
- Alex Marki
- AstraZeneca, Gaithersburg, Maryland, USA
| | - Klaus Ley
- La Jolla Institute for Immunology and Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
6
|
Yu S, Yu L. Migrasome biogenesis and functions. FEBS J 2022; 289:7246-7254. [PMID: 34492154 PMCID: PMC9786993 DOI: 10.1111/febs.16183] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/22/2021] [Accepted: 09/06/2021] [Indexed: 01/13/2023]
Abstract
The migrasome is a newly discovered organelle produced by migrating cells. As cells migrate, long and thin retraction fibers are left in their wake. On these fibers, we discovered the production of a pomegranate-like structure, which we named migrasomes. The production of migrasomes is highly correlated with the migration of cells. Currently, it has been demonstrated the migrasomes exhibit three modes of action: release of signaling molecules through rupturing or leaking, carriers of damaged mitochondria, and lateral transfer of mRNA or proteins. In this review, we would like to discuss, in detail, the functions, mechanisms, and potential applications of this newly discovered cell organelle.
Collapse
Affiliation(s)
- Shunbang Yu
- State Key Laboratory of Membrane BiologyBeijing Frontier Research Center for Biological StructureSchool of Life ScienceTsinghua University‐Peking University Joint Center for Life SciencesTsinghua UniversityBeijingChina
| | - Li Yu
- State Key Laboratory of Membrane BiologyBeijing Frontier Research Center for Biological StructureSchool of Life ScienceTsinghua University‐Peking University Joint Center for Life SciencesTsinghua UniversityBeijingChina
| |
Collapse
|
7
|
Migrasomes: From Biogenesis, Release, Uptake, Rupture to Homeostasis and Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4525778. [PMID: 35464764 PMCID: PMC9023195 DOI: 10.1155/2022/4525778] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/27/2021] [Accepted: 03/10/2022] [Indexed: 12/12/2022]
Abstract
Migrasomes are migration-dependent membrane-bound vesicular structures that contain cellular contents and small vesicles. Migrasomes grow on the tips or intersections of the retraction fibers after cells migrate away. The process of releasing migrasomes into the extracellular space is named as “migracytosis”. After releasing, they can be taken up by the surrounding cells, or rupture and further release their contents into the extracellular environment. Physiologically, migrasomes provide regional cues for organ morphogenesis during zebrafish gastrulation and discard the damaged mitochondria in response to mild mitochondrial stresses. Pathologically, migrasomes are released from podocyte during early podocyte stress and/or damage, from platelets after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), from microglia/macrophages of the ischemic brain, and from tumor necrosis factor α (TNFα)-activated endothelial cells (ECs); thus, this newly discovered extracellular vesicle is involved in all these pathological processes. Moreover, migrasomes can modulate the proliferation of cancer cell via lateral transferring mRNA and protein. In this review, we will summarize the biogenesis, release, uptake, and rupture of migrasomes and discuss its biological roles in development, redox signalling, innate immunity and COVID-19, cardio-cerebrovascular diseases, renal diseases, and cancer biology, all of these highlight the importance of migrasomes in modulating body homeostasis and diseases.
Collapse
|
8
|
Juhl AD, Wüstner D. Pathways and Mechanisms of Cellular Cholesterol Efflux-Insight From Imaging. Front Cell Dev Biol 2022; 10:834408. [PMID: 35300409 PMCID: PMC8920967 DOI: 10.3389/fcell.2022.834408] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 12/24/2022] Open
Abstract
Cholesterol is an essential molecule in cellular membranes, but too much cholesterol can be toxic. Therefore, mammalian cells have developed complex mechanisms to remove excess cholesterol. In this review article, we discuss what is known about such efflux pathways including a discussion of reverse cholesterol transport and formation of high-density lipoprotein, the function of ABC transporters and other sterol efflux proteins, and we highlight their role in human diseases. Attention is paid to the biophysical principles governing efflux of sterols from cells. We also discuss recent evidence for cholesterol efflux by the release of exosomes, microvesicles, and migrasomes. The role of the endo-lysosomal network, lipophagy, and selected lysosomal transporters, such as Niemann Pick type C proteins in cholesterol export from cells is elucidated. Since oxysterols are important regulators of cellular cholesterol efflux, their formation, trafficking, and secretion are described briefly. In addition to discussing results obtained with traditional biochemical methods, focus is on studies that use established and novel bioimaging approaches to obtain insight into cholesterol efflux pathways, including fluorescence and electron microscopy, atomic force microscopy, X-ray tomography as well as mass spectrometry imaging.
Collapse
Affiliation(s)
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, PhyLife, Physical Life Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
9
|
Charest A. Experimental and Biological Insights from Proteomic Analyses of Extracellular Vesicle Cargos in Normalcy and Disease. ADVANCED BIOSYSTEMS 2020; 4:e2000069. [PMID: 32815324 PMCID: PMC8091982 DOI: 10.1002/adbi.202000069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/19/2020] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) offer a vehicle for diagnostic and therapeutic utility. EVs carry bioactive cargo and an accrued interest in their characterization has emerged. Efforts at identifying EV-enriched protein or RNA led to a surprising realization that EVs are excessively heterogeneous in nature. This diversity is originally attributed to vesicle sizes but it is becoming evident that different classes of EVs vehiculate distinct molecular cargos. Therefore, one of the current challenges in EV research is their selective isolation in quantities sufficient for efficient downstream analyses. Many protocols have been developed; however, reproducibility between research groups can be difficult to reach and inter-studies analyses of data from different isolation protocols are unmanageable. Therefore, there is an unmet need to optimize and standardize methods and protocols for the isolation and purification of EVs. This review focuses on the diverse techniques and protocols used over the years to isolate and purify EVs with a special emphasis on their adequacy for proteomics applications. By combining recent advances in specific isolation methods that yield superior quality of EV preparations and mass spectrometry techniques, the field is now prepared for transformative advancements in establishing distinct categorization and cargo identification of subpopulations based on EV surface markers.
Collapse
|
10
|
Gözen I, Dommersnes P. Biological lipid nanotubes and their potential role in evolution. THE EUROPEAN PHYSICAL JOURNAL. SPECIAL TOPICS 2020; 229:2843-2862. [PMID: 33224439 PMCID: PMC7666715 DOI: 10.1140/epjst/e2020-000130-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The membrane of cells and organelles are highly deformable fluid interfaces, and can take on a multitude of shapes. One distinctive and particularly interesting property of biological membranes is their ability to from long and uniform nanotubes. These nanoconduits are surprisingly omnipresent in all domains of life, from archaea, bacteria, to plants and mammals. Some of these tubes have been known for a century, while others were only recently discovered. Their designations are different in different branches of biology, e.g. they are called stromule in plants and tunneling nanotubes in mammals. The mechanical transformation of flat membranes to tubes involves typically a combination of membrane anchoring and external forces, leading to a pulling action that results in very rapid membrane nanotube formation - micrometer long tubes can form in a matter of seconds. Their radius is set by a mechanical balance of tension and bending forces. There also exists a large class of membrane nanotubes that form due to curvature inducing molecules. It seems plausible that nanotube formation and functionality in plants and animals may have been inherited from their bacterial ancestors during endosymbiotic evolution. Here we attempt to connect observations of nanotubes in different branches of biology, and outline their similarities and differences with the aim of providing a perspective on their joint functions and evolutionary origin.
Collapse
Affiliation(s)
- Irep Gözen
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318 Norway
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, 0315 Norway
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 412 96 Sweden
| | - Paul Dommersnes
- Department of Physics, Norwegian University of Science and Technology, Hoegskoleringen 5, 7491 Trondheim, Norway
| |
Collapse
|
11
|
Liu Y, Li S, Rong W, Zeng C, Zhu X, Chen Q, Li L, Liu ZH, Zen K. Podocyte-Released Migrasomes in Urine Serve as an Indicator for Early Podocyte Injury. KIDNEY DISEASES 2020; 6:422-433. [PMID: 33313063 DOI: 10.1159/000511504] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022]
Abstract
Background Levels of urinary microvesicles, which are increased during various kidney injuries, have diagnostic potential for renal diseases. However, the significance of urinary microvesicles as a renal disease indicator is dampened by the difficulty to ascertain their cell source. Objectives The aim of this study was to demonstrate that podocytes can release migrasomes, a unique class of microvesicle with size ranging between 400 and 2,000 nm, and the urine level of migrasomes may serve as novel non-invasive biomarker for early podocyte injury. Method In this study, immunofluorescence labeling, electronic microscopy, nanosite, and sequential centrifugation were used to purify and analyze migrasomes. Results Migrasomes released by podocytes differ from exosomes as they have different content and mechanism of release. Compared to podocytes, renal tubular cells secrete markedly less migrasomes. Moreover, secretion of migrasomes by human or murine podocytes was strongly augmented during podocyte injuries induced by LPS, puromycin amino nucleoside (PAN), or a high concentration of glucose (HG). LPS, PAN, or HG-induced podocyte migrasome release, however, was blocked by Rac-1 inhibitor. Strikingly, a higher level of podocyte migrasomes in urine was detected in mice with PAN-nephropathy than in control mice. In fact, increased urinary migrasome number was detected earlier than elevated proteinuria during PAN-nephropathy, suggesting that urinary migrasomes are a more sensitive podocyte injury indicator than proteinuria. Increased urinary migrasome number was also detected in diabetic nephropathy patients with proteinuria level <5.5 g/day. Conclusions Our findings reveal that podocytes release the "injury-related" migrasomes during migration and provide urinary podocyte migrasome as a potential diagnostic marker for early podocyte injury.
Collapse
Affiliation(s)
- Ying Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Jiangsu Engineering Research Center for MicroRNA Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| | - Shan Li
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Jiangsu Engineering Research Center for MicroRNA Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| | - Weiwei Rong
- Jiangsu Engineering Research Center for MicroRNA Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| | - Caihong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiaodong Zhu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qilin Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Limin Li
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Jiangsu Engineering Research Center for MicroRNA Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| | - Zhi-Hong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Ke Zen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.,Jiangsu Engineering Research Center for MicroRNA Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| |
Collapse
|
12
|
Zhang Y, Wang J, Ding Y, Zhang J, Xu Y, Xu J, Zheng S, Yang H. Migrasome and Tetraspanins in Vascular Homeostasis: Concept, Present, and Future. Front Cell Dev Biol 2020; 8:438. [PMID: 32612990 PMCID: PMC7308473 DOI: 10.3389/fcell.2020.00438] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
Cell migration plays a critical role in vascular homeostasis. Under noxious stimuli, endothelial cells (ECs) migration always contributes to vascular repair, while enhanced migration of vascular smooth muscle cells (VSMCs) will lead to pathological vascular remodeling. Moreover, vascular activities are involved in communication between ECs and VSMCs, between ECs and immune cells, et al. Recently, Ma et al. (2015) discovered a novel migration-dependent organelle “migrasome,” which mediated release of cytoplasmic contents, and this process was defined as “migracytosis.” The formation of migrasome is precisely regulated by tetraspanins (TSPANs), cholesterol and integrins. Migrasomes can be taken up by neighboring cells, and migrasomes are distributed in many kinds of cells and tissues, such as in blood vessel, human serum, and in ischemic brain of human and mouse. In addition, the migrasome elements TSPANs are wildly expressed in cardiovascular system. Therefore, TSPANs, migrasomes and migracytosis might play essential roles in regulating vascular homeostasis. In this review, we will discuss the discoveries of migration-dependent migrasome and migracytosis, migrasome formation, the basic differences between migrasomes and exosomes, the distributions and functions of migrasome, the functions of migrasome elements TSPANs in vascular biology, and discuss the possible roles of migrasomes and migracytosis in vascular homeostasis.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Wang
- Department of Ophthalmology, Qingdao Fubai Eye Hospital, Qingdao, China
| | - Yungang Ding
- Department of Ophthalmology, Qingdao Ludong Eye Hospital, Qingdao, China
| | - Jiongshan Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Xu
- Department of Gastrointestinal Endoscopy, Guangzhou Cadre Health Management Center/Guangzhou Eleventh People's Hospital, Guangzhou, China
| | - Jingting Xu
- Biofeedback Laboratory, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Shuhui Zheng
- Research Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongzhi Yang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|