1
|
Mak KK, Balijepalli MK, Pichika MR. Success stories of AI in drug discovery - where do things stand? Expert Opin Drug Discov 2021; 17:79-92. [PMID: 34553659 DOI: 10.1080/17460441.2022.1985108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Artificial intelligence (AI) in drug discovery and development (DDD) has gained more traction in the past few years. Many scientific reviews have already been made available in this area. Thus, in this review, the authors have focused on the success stories of AI-driven drug candidates and the scientometric analysis of the literature in this field. AREA COVERED The authors explore the literature to compile the success stories of AI-driven drug candidates that are currently being assessed in clinical trials or have investigational new drug (IND) status. The authors also provide the reader with their expert perspectives for future developments and their opinions on the field. EXPERT OPINION Partnerships between AI companies and the pharma industry are booming. The early signs of the impact of AI on DDD are encouraging, and the pharma industry is hoping for breakthroughs. AI can be a promising technology to unveil the greatest successes, but it has yet to be proven as AI is still at the embryonic stage.
Collapse
Affiliation(s)
- Kit-Kay Mak
- School of Postgraduate Studies and Research, International Medical University, Bukit Jalil, Malaysia.,Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Bukit Jalil, Malaysia.,Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development, and Innovation (Irdi), International Medical University, Bukit Jalil, Malaysia
| | | | - Mallikarjuna Rao Pichika
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Bukit Jalil, Malaysia.,Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development, and Innovation (Irdi), International Medical University, Bukit Jalil, Malaysia
| |
Collapse
|
2
|
Carracedo-Reboredo P, Liñares-Blanco J, Rodríguez-Fernández N, Cedrón F, Novoa FJ, Carballal A, Maojo V, Pazos A, Fernandez-Lozano C. A review on machine learning approaches and trends in drug discovery. Comput Struct Biotechnol J 2021; 19:4538-4558. [PMID: 34471498 PMCID: PMC8387781 DOI: 10.1016/j.csbj.2021.08.011] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/30/2022] Open
Abstract
Drug discovery aims at finding new compounds with specific chemical properties for the treatment of diseases. In the last years, the approach used in this search presents an important component in computer science with the skyrocketing of machine learning techniques due to its democratization. With the objectives set by the Precision Medicine initiative and the new challenges generated, it is necessary to establish robust, standard and reproducible computational methodologies to achieve the objectives set. Currently, predictive models based on Machine Learning have gained great importance in the step prior to preclinical studies. This stage manages to drastically reduce costs and research times in the discovery of new drugs. This review article focuses on how these new methodologies are being used in recent years of research. Analyzing the state of the art in this field will give us an idea of where cheminformatics will be developed in the short term, the limitations it presents and the positive results it has achieved. This review will focus mainly on the methods used to model the molecular data, as well as the biological problems addressed and the Machine Learning algorithms used for drug discovery in recent years.
Collapse
Key Words
- ADMET, Absorption, distribution, metabolism, elimination and toxicity
- ADR, Adverse Drug Reaction
- AI, Artificial Intelligence
- ANN, Artificial Neural Networks
- APFP, Atom Pairs 2d FingerPrint
- AUC, Area under the Curve
- BBB, Blood–Brain barrier
- CDK, Chemical Development Kit
- CNN, Convolutional Neural Networks
- CNS, Central Nervous System
- CPI, Compound-protein interaction
- CV, Cross Validation
- Cheminformatics
- DL, Deep Learning
- DNA, Deoxyribonucleic acid
- Deep Learning
- Drug Discovery
- ECFP, Extended Connectivity Fingerprints
- FDA, Food and Drug Administration
- FNN, Fully Connected Neural Networks
- FP, Fringerprints
- FS, Feature Selection
- GCN, Graph Convolutional Networks
- GEO, Gene Expression Omnibus
- GNN, Graph Neural Networks
- GO, Gene Ontology
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- MACCS, Molecular ACCess System
- MCC, Matthews correlation coefficient
- MD, Molecular Descriptors
- MKL, Multiple Kernel Learning
- ML, Machine Learning
- Machine Learning
- Molecular Descriptors
- NB, Naive Bayes
- OOB, Out of Bag
- PCA, Principal Component Analyisis
- QSAR
- QSAR, Quantitative structure–activity relationship
- RF, Random Forest
- RNA, Ribonucleic Acid
- SMILES, simplified molecular-input line-entry system
- SVM, Support Vector Machines
- TCGA, The Cancer Genome Atlas
- WHO, World Health Organization
- t-SNE, t-Distributed Stochastic Neighbor Embedding
Collapse
Affiliation(s)
- Paula Carracedo-Reboredo
- Department of Computer Science and Information Technologies, Faculty of Computer Science, Universidade da Coruna, Campus Elviña s/n, A Coruña 15071, Spain
| | - Jose Liñares-Blanco
- Department of Computer Science and Information Technologies, Faculty of Computer Science, Universidade da Coruna, Campus Elviña s/n, A Coruña 15071, Spain
- CITIC-Research Center of Information and Communication Technologies, Universidade da Coruna, A Coruña 15071, Spain
| | - Nereida Rodríguez-Fernández
- CITIC-Research Center of Information and Communication Technologies, Universidade da Coruna, A Coruña 15071, Spain
- Department of Computer Science and Information Technologies, Faculty of Communication Science, Universidade da Coruna, Campus Elviña s/n, A Coruña 15071, Spain
| | - Francisco Cedrón
- Department of Computer Science and Information Technologies, Faculty of Computer Science, Universidade da Coruna, Campus Elviña s/n, A Coruña 15071, Spain
| | - Francisco J. Novoa
- Department of Computer Science and Information Technologies, Faculty of Computer Science, Universidade da Coruna, Campus Elviña s/n, A Coruña 15071, Spain
| | - Adrian Carballal
- Department of Computer Science and Information Technologies, Faculty of Computer Science, Universidade da Coruna, Campus Elviña s/n, A Coruña 15071, Spain
- CITIC-Research Center of Information and Communication Technologies, Universidade da Coruna, A Coruña 15071, Spain
- Department of Computer Science and Information Technologies, Faculty of Communication Science, Universidade da Coruna, Campus Elviña s/n, A Coruña 15071, Spain
| | - Victor Maojo
- Biomedical Informatics Group, Artificial Intelligence Department, Polytechnic University of Madrid, Calle de los Ciruelos, Boadilla del Monte, Madrid 28660, Spain
| | - Alejandro Pazos
- Department of Computer Science and Information Technologies, Faculty of Computer Science, Universidade da Coruna, Campus Elviña s/n, A Coruña 15071, Spain
- CITIC-Research Center of Information and Communication Technologies, Universidade da Coruna, A Coruña 15071, Spain
- Grupo de Redes de Neuronas Artificiales y Sistemas Adaptativos. Imagen Médica y Diagnóstico Radiológico (RNASA-IMEDIR), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Universidade da Coruña, Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Carlos Fernandez-Lozano
- Department of Computer Science and Information Technologies, Faculty of Computer Science, Universidade da Coruna, Campus Elviña s/n, A Coruña 15071, Spain
- CITIC-Research Center of Information and Communication Technologies, Universidade da Coruna, A Coruña 15071, Spain
- Grupo de Redes de Neuronas Artificiales y Sistemas Adaptativos. Imagen Médica y Diagnóstico Radiológico (RNASA-IMEDIR), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Universidade da Coruña, Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| |
Collapse
|
3
|
Thakur A, Mishra AP, Panda B, Rodríguez DCS, Gaurav I, Majhi B. Application of Artificial Intelligence in Pharmaceutical and Biomedical Studies. Curr Pharm Des 2021; 26:3569-3578. [PMID: 32410553 DOI: 10.2174/1381612826666200515131245] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/01/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Artificial intelligence (AI) is the way to model human intelligence to accomplish certain tasks without much intervention of human beings. The term AI was first used in 1956 with The Logic Theorist program, which was designed to simulate problem-solving ability of human beings. There have been a significant amount of research works using AI in order to determine the advantages and disadvantages of its applicabication and, future perspectives that impact different areas of society. Even the remarkable impact of AI can be transferred to the field of healthcare with its use in pharmaceutical and biomedical studies crucial for the socioeconomic development of the population in general within different studies, we can highlight those that have been conducted with the objective of treating diseases, such as cancer, neurodegenerative diseases, among others. In parallel, the long process of drug development also requires the application of AI to accelerate research in medical care. METHODS This review is based on research material obtained from PubMed up to Jan 2020. The search terms include "artificial intelligence", "machine learning" in the context of research on pharmaceutical and biomedical applications. RESULTS This study aimed to highlight the importance of AI in the biomedical research and also recent studies that support the use of AI to generate tools using patient data to improve outcomes. Other studies have demonstrated the use of AI to create prediction models to determine response to cancer treatment. CONCLUSION The application of AI in the field of pharmaceutical and biomedical studies has been extensive, including cancer research, for diagnosis as well as prognosis of the disease state. It has become a tool for researchers in the management of complex data, ranging from obtaining complementary results to conventional statistical analyses. AI increases the precision in the estimation of treatment effect in cancer patients and determines prediction outcomes.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Ambika P Mishra
- Department of Computer Science and Engineering, Institute of Technical Education and Research, Siksha 'O' Anusandhan University, Bhubaneswar, Orissa, India
| | - Bishnupriya Panda
- Department of Computer Science and Engineering, Institute of Technical Education and Research, Siksha 'O' Anusandhan University, Bhubaneswar, Orissa, India
| | - Diana C S Rodríguez
- Foundation for Clinical and Applied Cancer Research-FICMAC, Bogota, Colombia
| | - Isha Gaurav
- Patna Women's College (Autonmous), Patna, Bihar, India
| | - Babita Majhi
- Department of Computer Science and Information Technology, Guru Ghashidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| |
Collapse
|
4
|
Tree-Based QSAR Model for Drug Repurposing in the Discovery of New Antibacterial Compounds Against Escherichia coli. Pharmaceuticals (Basel) 2020; 13:ph13120431. [PMID: 33260726 PMCID: PMC7760995 DOI: 10.3390/ph13120431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 01/31/2023] Open
Abstract
Drug repurposing appears as an increasing popular tool in the search of new treatment options against bacteria. In this paper, a tree-based classification method using Linear Discriminant Analysis (LDA) and discrete indexes was used to create a QSAR (Quantitative Structure-Activity Relationship) model to predict antibacterial activity against Escherichia coli. The model consists on a hierarchical decision tree in which a discrete index is used to divide compounds into groups according to their values for said index in order to construct probability spaces. The second step consists in the calculation of a discriminant function which determines the prediction of the model. The model was used to screen the DrugBank database, identifying 134 drugs as possible antibacterial candidates. Out of these 134 drugs, 8 were antibacterial drugs, 67 were drugs approved for different pathologies and 55 were drugs in experimental stages. This methodology has proven to be a viable alternative to the traditional methods used to obtain prediction models based on LDA and its application provides interesting new drug candidates to be studied as repurposed antibacterial treatments. Furthermore, the topological indexes Nclass and Numhba have proven to have the ability to group active compounds effectively, which suggests a close relationship between them and the antibacterial activity of compounds against E. coli.
Collapse
|
5
|
Rim KT. In silico prediction of toxicity and its applications for chemicals at work. TOXICOLOGY AND ENVIRONMENTAL HEALTH SCIENCES 2020; 12:191-202. [PMID: 32421081 PMCID: PMC7223298 DOI: 10.1007/s13530-020-00056-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/21/2020] [Indexed: 04/14/2023]
Abstract
OBJECTIVE AND METHODS This study reviewed the concept of in silico prediction of chemical toxicity for prevention of occupational cancer and future prospects in workers' health. In this review, a new approach to determine the credibility of in silico predictions with raw data is explored, and the method of determining the confidence level of evaluation based on the credibility of data is discussed. I searched various papers and books related to the in silico prediction of chemical toxicity and carcinogenicity. The intention was to utilize the most recent reports after 2015 regarding in silico prediction. RESULTS AND CONCLUSION The application of in silico methods is increasing with the prediction of toxic risks to human and the environment. The various toxic effects of industrial chemicals have triggered the recognition of the importance of using a combination of in silico models in the risk assessments. In silico occupational exposure models, industrial accidents, and occupational cancers are effectively managed and chemicals evaluated. It is important to identify and manage hazardous substances proactively through the rigorous evaluation of chemicals.
Collapse
Affiliation(s)
- Kyung-Taek Rim
- Chemicals Research Bureau, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, Daejeon, Korea
| |
Collapse
|
6
|
Buglak AA, Zherdev AV, Dzantiev BB. Nano-(Q)SAR for Cytotoxicity Prediction of Engineered Nanomaterials. Molecules 2019; 24:molecules24244537. [PMID: 31835808 PMCID: PMC6943593 DOI: 10.3390/molecules24244537] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/24/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Although nanotechnology is a new and rapidly growing area of science, the impact of nanomaterials on living organisms is unknown in many aspects. In this regard, it is extremely important to perform toxicological tests, but complete characterization of all varying preparations is extremely laborious. The computational technique called quantitative structure–activity relationship, or QSAR, allows reducing the cost of time- and resource-consuming nanotoxicity tests. In this review, (Q)SAR cytotoxicity studies of the past decade are systematically considered. We regard here five classes of engineered nanomaterials (ENMs): Metal oxides, metal-containing nanoparticles, multi-walled carbon nanotubes, fullerenes, and silica nanoparticles. Some studies reveal that QSAR models are better than classification SAR models, while other reports conclude that SAR is more precise than QSAR. The quasi-QSAR method appears to be the most promising tool, as it allows accurately taking experimental conditions into account. However, experimental artifacts are a major concern in this case.
Collapse
Affiliation(s)
- Andrey A. Buglak
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (A.V.Z.); (B.B.D.)
- Physical Faculty, St. Petersburg State University, 7/9 Universitetskaya Naberezhnaya, 199034 St. Petersburg, Russia
- Correspondence: ; Tel.: +7-(495)-954-27-32
| | - Anatoly V. Zherdev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (A.V.Z.); (B.B.D.)
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Severny Proezd 1, 142432 Chernogolovka, Moscow Region, Russia
| | - Boris B. Dzantiev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (A.V.Z.); (B.B.D.)
| |
Collapse
|
7
|
Thafar M, Raies AB, Albaradei S, Essack M, Bajic VB. Comparison Study of Computational Prediction Tools for Drug-Target Binding Affinities. Front Chem 2019; 7:782. [PMID: 31824921 PMCID: PMC6879652 DOI: 10.3389/fchem.2019.00782] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022] Open
Abstract
The drug development is generally arduous, costly, and success rates are low. Thus, the identification of drug-target interactions (DTIs) has become a crucial step in early stages of drug discovery. Consequently, developing computational approaches capable of identifying potential DTIs with minimum error rate are increasingly being pursued. These computational approaches aim to narrow down the search space for novel DTIs and shed light on drug functioning context. Most methods developed to date use binary classification to predict if the interaction between a drug and its target exists or not. However, it is more informative but also more challenging to predict the strength of the binding between a drug and its target. If that strength is not sufficiently strong, such DTI may not be useful. Therefore, the methods developed to predict drug-target binding affinities (DTBA) are of great value. In this study, we provide a comprehensive overview of the existing methods that predict DTBA. We focus on the methods developed using artificial intelligence (AI), machine learning (ML), and deep learning (DL) approaches, as well as related benchmark datasets and databases. Furthermore, guidance and recommendations are provided that cover the gaps and directions of the upcoming work in this research area. To the best of our knowledge, this is the first comprehensive comparison analysis of tools focused on DTBA with reference to AI/ML/DL.
Collapse
Affiliation(s)
- Maha Thafar
- Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
| | - Arwa Bin Raies
- Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Somayah Albaradei
- Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Magbubah Essack
- Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Vladimir B. Bajic
- Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
8
|
Mayr F, Vieider C, Temml V, Stuppner H, Schuster D. Open-Access Activity Prediction Tools for Natural Products. Case Study: hERG Blockers. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2019; 110:177-238. [PMID: 31621014 DOI: 10.1007/978-3-030-14632-0_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interference with the hERG potassium ion channel may cause cardiac arrhythmia and can even lead to death. Over the last few decades, several drugs, already on the market, and many more investigational drugs in various development stages, have had to be discontinued because of their hERG-associated toxicity. To recognize potential hERG activity in the early stages of drug development, a wide array of computational tools, based on different principles, such as 3D QSAR, 2D and 3D similarity, and machine learning, have been developed and are reviewed in this chapter. The various available prediction tools Similarity Ensemble Approach, SuperPred, SwissTargetPrediction, HitPick, admetSAR, PASSonline, Pred-hERG, and VirtualToxLab™ were used to screen a dataset of known hERG synthetic and natural product actives and inactives to quantify and compare their predictive power. This contribution will allow the reader to evaluate the suitability of these computational methods for their own related projects. There is an unmet need for natural product-specific prediction tools in this field.
Collapse
Affiliation(s)
- Fabian Mayr
- Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innsbruck, Austria
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Christian Vieider
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Veronika Temml
- Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innsbruck, Austria
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innsbruck, Austria
| | - Daniela Schuster
- Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Innsbruck, Austria.
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University Salzburg, Salzburg, Austria.
| |
Collapse
|
9
|
Munawar S, Windley MJ, Tse EG, Todd MH, Hill AP, Vandenberg JI, Jabeen I. Experimentally Validated Pharmacoinformatics Approach to Predict hERG Inhibition Potential of New Chemical Entities. Front Pharmacol 2018; 9:1035. [PMID: 30333745 PMCID: PMC6176658 DOI: 10.3389/fphar.2018.01035] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/27/2018] [Indexed: 12/17/2022] Open
Abstract
The hERG (human ether-a-go-go-related gene) encoded potassium ion (K+) channel plays a major role in cardiac repolarization. Drug-induced blockade of hERG has been a major cause of potentially lethal ventricular tachycardia termed Torsades de Pointes (TdPs). Therefore, we presented a pharmacoinformatics strategy using combined ligand and structure based models for the prediction of hERG inhibition potential (IC50) of new chemical entities (NCEs) during early stages of drug design and development. Integrated GRid-INdependent Descriptor (GRIND) models, and lipophilic efficiency (LipE), ligand efficiency (LE) guided template selection for the structure based pharmacophore models have been used for virtual screening and subsequent hERG activity (pIC50) prediction of identified hits. Finally selected two hits were experimentally evaluated for hERG inhibition potential (pIC50) using whole cell patch clamp assay. Overall, our results demonstrate a difference of less than ±1.6 log unit between experimentally determined and predicted hERG inhibition potential (IC50) of the selected hits. This revealed predictive ability and robustness of our models and could help in correctly rank the potency order (lower μM to higher nM range) against hERG.
Collapse
Affiliation(s)
- Saba Munawar
- Research Center for Modeling and Simulation, National University of Science and Technology, Islamabad, Pakistan.,Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | | | - Edwin G Tse
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Matthew H Todd
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| | - Adam P Hill
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | | | - Ishrat Jabeen
- Research Center for Modeling and Simulation, National University of Science and Technology, Islamabad, Pakistan
| |
Collapse
|