1
|
Doukov T, Herschlag D, Yabukarski F. Obtaining anomalous and ensemble information from protein crystals from 220 K up to physiological temperatures. Acta Crystallogr D Struct Biol 2023; 79:212-223. [PMID: 36876431 PMCID: PMC9986799 DOI: 10.1107/s205979832300089x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023] Open
Abstract
X-ray crystallography has been invaluable in delivering structural information about proteins. Previously, an approach has been developed that allows high-quality X-ray diffraction data to be obtained from protein crystals at and above room temperature. Here, this previous work is built on and extended by showing that high-quality anomalous signal can be obtained from single protein crystals using diffraction data collected at 220 K up to physiological temperatures. The anomalous signal can be used to directly determine the structure of a protein, i.e. to phase the data, as is routinely performed under cryoconditions. This ability is demonstrated by obtaining diffraction data from model lysozyme, thaumatin and proteinase K crystals, the anomalous signal from which allowed their structures to be solved experimentally at 7.1 keV X-ray energy and at room temperature with relatively low data redundancy. It is also demonstrated that the anomalous signal from diffraction data obtained at 310 K (37°C) can be used to solve the structure of proteinase K and to identify ordered ions. The method provides useful anomalous signal at temperatures down to 220 K, resulting in an extended crystal lifetime and increased data redundancy. Finally, we show that useful anomalous signal can be obtained at room temperature using X-rays of 12 keV energy as typically used for routine data collection, allowing this type of experiment to be carried out at widely accessible synchrotron beamline energies and enabling the simultaneous extraction of high-resolution data and anomalous signal. With the recent emphasis on obtaining conformational ensemble information for proteins, the high resolution of the data allows such ensembles to be built, while the anomalous signal allows the structure to be experimentally solved, ions to be identified, and water molecules and ions to be differentiated. Because bound metal-, phosphorus- and sulfur-containing ions all have anomalous signal, obtaining anomalous signal across temperatures and up to physiological temperatures will provide a more complete description of protein conformational ensembles, function and energetics.
Collapse
Affiliation(s)
- Tzanko Doukov
- SMB, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Daniel Herschlag
- Deparment of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Filip Yabukarski
- Deparment of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Bristol-Myers Squibb, San Diego, CA 92121, USA
| |
Collapse
|
2
|
Rocchio S, Duman R, El Omari K, Mykhaylyk V, Orr C, Yan Z, Salmon L, Wagner A, Bardwell JCA, Horowitz S. Identifying dynamic, partially occupied residues using anomalous scattering. Acta Crystallogr D Struct Biol 2019; 75:1084-1095. [PMID: 31793902 PMCID: PMC6889914 DOI: 10.1107/s2059798319014475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/22/2019] [Indexed: 11/24/2022] Open
Abstract
Although often presented as taking single `snapshots' of the conformation of a protein, X-ray crystallography provides an averaged structure over time and space within the crystal. The important but difficult task of characterizing structural ensembles in crystals is typically limited to small conformational changes, such as multiple side-chain conformations. A crystallographic method was recently introduced that utilizes residual electron and anomalous density (READ) to characterize structural ensembles encompassing large-scale structural changes. Key to this method is an ability to accurately measure anomalous signals and distinguish them from noise or other anomalous scatterers. This report presents an optimized data-collection and analysis strategy for partially occupied iodine anomalous signals. Using the long-wavelength-optimized beamline I23 at Diamond Light Source, the ability to accurately distinguish the positions of anomalous scatterers with occupancies as low as ∼12% is demonstrated. The number and positions of these anomalous scatterers are consistent with previous biophysical, kinetic and structural data that suggest that the protein Im7 binds to the chaperone Spy in multiple partially occupied conformations. Finally, READ selections demonstrate that re-measured data using the new protocols are consistent with the previously characterized structural ensemble of the chaperone Spy with its client Im7. This study shows that a long-wavelength beamline results in easily validated anomalous signals that are strong enough to be used to detect and characterize highly disordered sections of crystal structures.
Collapse
Affiliation(s)
- Serena Rocchio
- Department of Molecular, Cellular and Developmental Biology, and the Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biochemical Sciences ‘A. Rossi Fanelli’, Sapienza University of Roma, 00185 Rome, Italy
| | - Ramona Duman
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, England
| | - Kamel El Omari
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, England
| | - Vitaliy Mykhaylyk
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, England
| | - Christian Orr
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, England
| | - Zhen Yan
- Department of Molecular, Cellular and Developmental Biology, and the Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Loïc Salmon
- Centre de RMN à Très Hauts Champs, CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, 69100 Villeurbanne, France
| | - Armin Wagner
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, England
| | - James C. A. Bardwell
- Department of Molecular, Cellular and Developmental Biology, and the Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott Horowitz
- Department of Chemistry and Biochemistry and the Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
3
|
Förster A, Schulze-Briese C. A shared vision for macromolecular crystallography over the next five years. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:064302. [PMID: 31832486 PMCID: PMC6892709 DOI: 10.1063/1.5131017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/19/2019] [Indexed: 05/12/2023]
Abstract
Macromolecular crystallography (MX) is the dominant means of determining the three-dimensional structures of biological macromolecules, but the method has reached a critical juncture. New diffraction-limited storage rings and upgrades to the existing sources will provide beamlines with higher flux and brilliance, and even the largest detectors can collect at rates of several hundred hertz. Electron cryomicroscopy is successfully competing for structural biologists' most exciting projects. As a result, formerly scarce beam time is becoming increasingly abundant, and beamlines must innovate to attract users and ensure continued funding. Here, we will show how data collection has changed over the preceding five years and how alternative methods have emerged. We then explore how MX at synchrotrons might develop over the next five years. We predict that, despite the continued dominance of rotation crystallography, applications previously considered niche or experimental, such as serial crystallography, pink-beam crystallography, and crystallography at energies above 25 keV and below 5 keV, will rise in prominence as beamlines specialize to offer users the best value. Most of these emerging methods will require new hardware and software. With these advances, MX will more efficiently provide the high-resolution structures needed for drug development. MX will also be able to address a broader range of questions than before and contribute to a deeper understanding of biological processes in the context of integrative structural biology.
Collapse
|