1
|
Klett T, Stahlecker J, Jaag S, Masberg B, Knappe C, Lämmerhofer M, Coles M, Stehle T, Boeckler FM. Covalent Fragments Acting as Tyrosine Mimics for Mutant p53-Y220C Rescue by Nucleophilic Aromatic Substitution. ACS Pharmacol Transl Sci 2024; 7:3984-3999. [PMID: 39698266 PMCID: PMC11651176 DOI: 10.1021/acsptsci.4c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
The tumor suppressor p53 is frequently mutated in human cancers. The Y220C mutant is the ninth most common p53 cancer mutant and is classified as a structural mutant, as it leads to strong thermal destabilization and degradation by creating a solvent-accessible hydrophobic cleft. To identify small molecules that thermally stabilize p53, we employed DSF to screen SNAr-type electrophiles from our covalent fragment library (CovLib) for binding to different structural (Y220C, R282W) and DNA contact (R273H) mutants of p53. The reactive fragments SN001, SN006, and SN007 were detected to specifically stabilize Y220C, indicating the arylation of Cys220 in the mutational cleft, as confirmed by X-ray crystallography. The fragments occupy the central cavity and mimic the ring system of the WT tyrosine lost by the mutation. Surpassing previously reported noncovalent ligands, SN001 stabilized T-p53C-Y220C concentration-dependently up to 4.45 °C and, due to its small size, represents a promising starting point for optimization.
Collapse
Affiliation(s)
- Theresa Klett
- Lab
for Molecular Design & Pharm. Biophysics, Institute of Pharmaceutical
Sciences, Eberhard Karls Universität
Tübingen, 72076 Tübingen, Germany
| | - Jason Stahlecker
- Lab
for Molecular Design & Pharm. Biophysics, Institute of Pharmaceutical
Sciences, Eberhard Karls Universität
Tübingen, 72076 Tübingen, Germany
| | - Simon Jaag
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Benedikt Masberg
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Cornelius Knappe
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Michael Lämmerhofer
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Murray Coles
- Department
of Protein Evolution, Max-Planck-Institute
for Biology, 72076 Tübingen, Germany
| | - Thilo Stehle
- Interfaculty
Institute of Biochemistry, Eberhard Karls
Universität Tübingen, 72076 Tübingen, Germany
| | - Frank M. Boeckler
- Lab
for Molecular Design & Pharm. Biophysics, Institute of Pharmaceutical
Sciences, Eberhard Karls Universität
Tübingen, 72076 Tübingen, Germany
- Interfaculty
Institute for Biomedical Informatics (IBMI), Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Mariño Pérez L, Ielasi FS, Lee A, Delaforge E, Juyoux P, Tengo M, Davis RJ, Palencia A, Jensen MR. Structural basis of homodimerization of the JNK scaffold protein JIP2 and its heterodimerization with JIP1. Structure 2024; 32:1394-1403.e5. [PMID: 39013462 DOI: 10.1016/j.str.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/18/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024]
Abstract
The scaffold proteins JIP1 and JIP2 intervene in the c-Jun N-terminal kinase (JNK) pathway to mediate signaling specificity by coordinating the simultaneous assembly of multiple kinases. Using NMR, we demonstrate that JIP1 and JIP2 heterodimerize via their SH3 domains with the affinity of heterodimerization being comparable to homodimerization. We present the high-resolution crystal structure of the JIP2-SH3 homodimer and the JIP1-JIP2-SH3 heterodimeric complex. The JIP2-SH3 structure reveals how charge differences in residues at its dimer interface lead to formation of compensatory hydrogen bonds and salt bridges, distinguishing it from JIP1-SH3. In the JIP1-JIP2-SH3 complex, structural features of each homodimer are employed to stabilize the heterodimer. Building on these insights, we identify key residues crucial for stabilizing the dimer of both JIP1 and JIP2. Through targeted mutations in cellulo, we demonstrate a functional role for the dimerization of the JIP1 and JIP2 scaffold proteins in activation of the JNK signaling pathway.
Collapse
Affiliation(s)
- Laura Mariño Pérez
- University Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France; Departament de Química, Universitat de les Illes Balears, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Palma, Spain
| | - Francesco S Ielasi
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Targets in Human Diseases, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Alexandra Lee
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | - Pauline Juyoux
- University Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Maud Tengo
- University Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Andrés Palencia
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Targets in Human Diseases, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France.
| | | |
Collapse
|
3
|
Lim LZ, Song J. NMR Dynamic View of the Stabilization of the WW4 Domain by Neutral NaCl and Kosmotropic Na 2SO 4 and NaH 2PO 4. Int J Mol Sci 2024; 25:9091. [PMID: 39201778 PMCID: PMC11354479 DOI: 10.3390/ijms25169091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The Hofmeister series categorizes ions based on their effects on protein stability, yet the microscopic mechanism remains a mystery. In this series, NaCl is neutral, Na2SO4 and Na2HPO4 are kosmotropic, while GdmCl and NaSCN are chaotropic. This study employs CD and NMR to investigate the effects of NaCl, Na2SO4, and Na2HPO4 on the conformation, stability, binding, and backbone dynamics (ps-ns and µs-ms time scales) of the WW4 domain with a high stability and accessible side chains at concentrations ≤ 200 mM. The results indicated that none of the three salts altered the conformation of WW4 or showed significant binding to the four aliphatic hydrophobic side chains. NaCl had no effect on its thermal stability, while Na2SO4 and Na2HPO4 enhanced the stability by ~5 °C. Interestingly, NaCl only weakly interacted with the Arg27 amide proton, whereas Na2SO4 bound to Arg27 and Phe31 amide protons with Kd of 32.7 and 41.6 mM, respectively. Na2HPO4, however, bound in a non-saturable manner to Trp9, His24, and Asn36 amide protons. While the three salts had negligible effects on ps-ns backbone dynamics, NaCl and Na2SO4 displayed no effect while Na2HPO4 significantly increased the µs-ms backbone dynamics. These findings, combined with our recent results with GdmCl and NaSCN, suggest a microscopic mechanism for the Hofmeister series. Additionally, the data revealed a lack of simple correlation between thermodynamic stability and backbone dynamics, most likely due to enthalpy-entropy compensation. Our study rationalizes the selection of chloride and phosphate as the primary anions in extracellular and intracellular spaces, as well as polyphosphate as a primitive chaperone in certain single-cell organisms.
Collapse
Affiliation(s)
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
4
|
Lim LZ, Song J. NMR Dynamic View of the Destabilization of WW4 Domain by Chaotropic GdmCl and NaSCN. Int J Mol Sci 2024; 25:7344. [PMID: 39000450 PMCID: PMC11242413 DOI: 10.3390/ijms25137344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
GdmCl and NaSCN are two strong chaotropic salts commonly used in protein folding and stability studies, but their microscopic mechanisms remain enigmatic. Here, by CD and NMR, we investigated their effects on conformations, stability, binding and backbone dynamics on ps-ns and µs-ms time scales of a 39-residue but well-folded WW4 domain at salt concentrations ≤200 mM. Up to 200 mM, both denaturants did not alter the tertiary packing of WW4, but GdmCl exerted more severe destabilization than NaSCN. Intriguingly, GdmCl had only weak binding to amide protons, while NaSCN showed extensive binding to both hydrophobic side chains and amide protons. Neither denaturant significantly affected the overall ps-ns backbone dynamics, but they distinctively altered µs-ms backbone dynamics. This study unveils that GdmCl and NaSCN destabilize a protein before the global unfolding occurs with differential binding properties and µs-ms backbone dynamics, implying the absence of a simple correlation between thermodynamic stability and backbone dynamics of WW4 at both ps-ns and µs-ms time scales.
Collapse
Affiliation(s)
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
5
|
de Amorim GC, Bardiaux B, Izadi-Pruneyre N. Structural Analysis of Proteins from Bacterial Secretion Systems and Their Assemblies by NMR Spectroscopy. Methods Mol Biol 2024; 2715:503-517. [PMID: 37930547 DOI: 10.1007/978-1-0716-3445-5_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Bacterial secretion systems are built up from proteins with different physicochemical characteristics, such as highly hydrophobic transmembrane polypeptides, and soluble periplasmic or intracellular domains. A single complex can be composed of more than ten proteins with distinct features, spreading through different cellular compartments. The membrane and multicompartment nature of the proteins, and their large molecular weight make their study challenging. However, information on their structure and assemblies is required to understand their mechanisms and interfere with them. An alternative strategy is to work with soluble domains and peptides corresponding to the regions of interest of the proteins.Here, we describe a simple and fast protocol to evaluate the stability, folding, and interaction of protein sub-complexes by using solution-state Nuclear Magnetic Resonance (NMR) spectroscopy. This technique is widely used for protein structure and protein-ligand interaction analysis in solution.
Collapse
Affiliation(s)
- Gisele Cardoso de Amorim
- Núcleo Multidisciplinar de Pesquisa em Biologia, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Duque de Caxias, RJ, Brazil
| | - Benjamin Bardiaux
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Bacterial Transmembrane Systems Unit, Paris, France
| | - Nadia Izadi-Pruneyre
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Bacterial Transmembrane Systems Unit, Paris, France.
| |
Collapse
|
6
|
Nasreddine R, Nehmé R. Microscale thermophoresis for studying protein-small molecule affinity: Application to hyaluronidase. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|