1
|
Ariyoshi R, Matsuzaki T, Sato R, Minamihata K, Hayashi K, Koga T, Orita K, Nishioka R, Wakabayashi R, Goto M, Kamiya N. Engineering the Propeptide of Microbial Transglutaminase Zymogen: Enabling Substrate-Dependent Activation for Bioconjugation Applications. Bioconjug Chem 2024; 35:340-350. [PMID: 38421254 DOI: 10.1021/acs.bioconjchem.3c00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Microbial transglutaminase (MTG) from Streptomyces mobaraensis is a powerful biocatalytic glue for site-specific cross-linking of a range of biomolecules and synthetic molecules that have an MTG-reactive moiety. The preparation of active recombinant MTG requires post-translational proteolytic digestion of a propeptide that functions as an intramolecular chaperone to assist the correct folding of the MTG zymogen (MTGz) in the biosynthesis. Herein, we report engineered active zymogen of MTG (EzMTG) that is expressed in soluble form in the host Escherichia coli cytosol and exhibits cross-linking activity without limited proteolysis of the propeptide. We found that the saturation mutagenesis of residues K10 or Y12 in the propeptide domain generated several active MTGz mutants. In particular, the K10D/Y12G mutant exhibited catalytic activity comparable to that of mature MTG. However, the expression level was low, possibly because of decreased chaperone activity and/or the promiscuous substrate specificity of MTG, which is potentially harmful to the host cells. The K10R/Y12A mutant exhibited specific substrate-dependent reactivity toward peptidyl substrates. Quantitative analysis of the binding affinity of the mutated propeptides to the active site of MTG suggested an inverse relationship between the binding affinity and the catalytic activity of EzMTG. Our proof-of-concept study provides insights into the design of a new biocatalyst using the MTGz as a scaffold and a potential route to high-throughput screening of EzMTG mutants for bioconjugation applications.
Collapse
Affiliation(s)
- Ryutaro Ariyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Takashi Matsuzaki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Ryo Sato
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Kounosuke Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Taisei Koga
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Kensei Orita
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Riko Nishioka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
2
|
Bao X, Liu X, Yu B, Li Y, Cui M, Wang W, Feng Y, Xu X, Sun G, Li B, Li Z, Yang J. Transcriptome Profiling Based on Larvae at Different Time Points After Hatching Provides a Core Set of Gene Resource for Understanding the Metabolic Mechanisms of the Brood-Care Behavior in Octopus ocellatus. Front Physiol 2022; 12:762681. [PMID: 35069236 PMCID: PMC8777255 DOI: 10.3389/fphys.2021.762681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
The metabolic processes of organisms are very complex. Each process is crucial and affects the growth, development, and reproduction of organisms. Metabolism-related mechanisms in Octopus ocellatus behaviors have not been widely studied. Brood-care is a common behavior in most organisms, which can improve the survival rate and constitution of larvae. Octopus ocellatus carried out this behavior, but it was rarely noticed by researchers before. In our study, 3,486 differentially expressed genes (DEGs) were identified based on transcriptome analysis of O. ocellatus. We identify metabolism-related DEGs using GO and KEGG enrichment analyses. Then, we construct protein-protein interaction networks to search the functional relationships between metabolism-related DEGs. Finally, we identified 10 hub genes related to multiple gene functions or involved in multiple signal pathways and verified them using quantitative real-time polymerase chain reaction (qRT-PCR). Protein-protein interaction networks were first used to study the effects of brood-care behavior on metabolism in the process of growing of O. ocellatus larvae, and the results provide us valuable genetic resources for understanding the metabolic processes of invertebrate larvae. The data lay a foundation for further study the brood-care behavior and metabolic mechanisms of invertebrates.
Collapse
Affiliation(s)
- Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China
| | - Benshu Yu
- Shandong Fisheries Development and Resources Conservation Center, Yantai, China
| | - Yan Li
- School of Agriculture, Ludong University, Yantai, China
| | - Mingxian Cui
- School of Agriculture, Ludong University, Yantai, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai, China
| | - Bin Li
- School of Agriculture, Ludong University, Yantai, China
- Yantai Haiyu Marine Science and Technology Co. Ltd., Yantai, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, China
| |
Collapse
|