1
|
Kmecick M, Vieira da Costa MC, Ferreira EDC, Prodocimo MM, Ortolani-Machado CF. Critical Evaluation of Embedding Media for Histological Studies of Early Stages of Chick Embryo Development. Methods Protoc 2023; 6:mps6020038. [PMID: 37104020 PMCID: PMC10146326 DOI: 10.3390/mps6020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
A histological examination is an important tool in embryology, developmental biology, and correlated areas. Despite the amount of information available about tissue embedding and different media, there is a lack of information regarding best practices for embryonic tissues. Embryonic tissues are considered fragile structures, usually small in size, and frequently challenging to position correctly in media for the subsequent histological steps. Here, we discuss the embedding media and procedures that provided us with appropriate preservation of tissue and easier orientation of embryos at early development. Fertilized Gallus gallus eggs were incubated for 72 h, collected, fixed, processed, and embedded with paraplast, polyethylene glycol (PEG), or historesin. These resins were compared by the precision of tissue orientation, the preview of the embryos in the blocks, microtomy, contrast in staining, preservation, average time, and cost. Paraplast and PEG did not allow correct embryo orientation, even with agar–gelatin pre-embedded samples. Additionally, structural maintenance was hindered and did not allow detailed morphological assessment, presenting tissue shrinkage and disruption. Historesin provided precise tissue orientation and excellent preservation of structures. Assessing the performance of the embedding media contributes significantly to future developmental research, optimizing the processing of embryo specimens and improving results.
Collapse
Affiliation(s)
- Melyssa Kmecick
- Laboratory of Embryotoxicology, Department of Cell Biology, Biological Sciences Sector, Federal University of Paraná, Av. Cel. Francisco Heráclito dos Santos, 100, Curitiba 81.531-980, PR, Brazil
| | - Mariliza Cristine Vieira da Costa
- Laboratory of Embryotoxicology, Department of Cell Biology, Biological Sciences Sector, Federal University of Paraná, Av. Cel. Francisco Heráclito dos Santos, 100, Curitiba 81.531-980, PR, Brazil
| | - Eduardo da Costa Ferreira
- Laboratory of Embryotoxicology, Department of Cell Biology, Biological Sciences Sector, Federal University of Paraná, Av. Cel. Francisco Heráclito dos Santos, 100, Curitiba 81.531-980, PR, Brazil
| | - Maritana Mela Prodocimo
- Laboratory of Cell Toxicology, Department of Cell Biology, Biological Sciences Sector, Federal University of Paraná, Av. Cel. Francisco Heráclito dos Santos, 100, Curitiba 81.531-980, PR, Brazil
| | - Claudia Feijó Ortolani-Machado
- Laboratory of Embryotoxicology, Department of Cell Biology, Biological Sciences Sector, Federal University of Paraná, Av. Cel. Francisco Heráclito dos Santos, 100, Curitiba 81.531-980, PR, Brazil
| |
Collapse
|
2
|
Solini GE, Pownall ME, Hillenbrand MJ, Tocheny CE, Paudel S, Halleran AD, Bianchi CH, Huyck RW, Saha MS. Xenopus embryos show a compensatory response following perturbation of the Notch signaling pathway. Dev Biol 2020; 460:99-107. [PMID: 31899211 PMCID: PMC7263880 DOI: 10.1016/j.ydbio.2019.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/03/2019] [Accepted: 12/24/2019] [Indexed: 11/09/2022]
Abstract
As an essential feature of development, robustness ensures that embryos attain a consistent phenotype despite genetic and environmental variation. The growing number of examples demonstrating that embryos can mount a compensatory response to germline mutations in key developmental genes has heightened interest in the phenomenon of embryonic robustness. While considerable progress has been made in elucidating genetic compensation in response to germline mutations, the diversity, mechanisms, and limitations of embryonic robustness remain unclear. In this work, we have examined whether Xenopus laevis embryos are able to compensate for perturbations of the Notch signaling pathway induced by RNA injection constructs that either upregulate or inhibit this signaling pathway. Consistent with earlier studies, we found that at neurula stages, hyperactivation of the Notch pathway inhibited neural differentiation while inhibition of Notch signaling increases premature differentiation as assayed by neural beta tubulin expression. However, surprisingly, by hatching stages, embryos begin to compensate for these perturbations, and by swimming tadpole stages most embryos exhibited normal neuronal gene expression. Using cell proliferation and TUNEL assays, we show that the compensatory response is, in part, mediated by modulating levels of cell proliferation and apoptosis. This work provides an additional model for addressing the mechanisms of embryonic robustness and of genetic compensation.
Collapse
Affiliation(s)
- Grace E Solini
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Mark E Pownall
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Molly J Hillenbrand
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Claire E Tocheny
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Sudip Paudel
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Andrew D Halleran
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Catherine H Bianchi
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Ryan W Huyck
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA
| | - Margaret S Saha
- Department of Biology, College of William and Mary, Williamsburg, VA, 23185, USA.
| |
Collapse
|
3
|
Dong C, Paudel S, Amoh NY, Saha MS. Expression of trpv channels during Xenopus laevis embryogenesis. Gene Expr Patterns 2018; 30:64-70. [PMID: 30326274 PMCID: PMC6319392 DOI: 10.1016/j.gep.2018.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/02/2018] [Accepted: 10/09/2018] [Indexed: 01/26/2023]
Abstract
Transient receptor potential (TRP) cation channel genes code for an extensive family of conserved proteins responsible for a variety of physiological processes, including sensory perception, ion homeostasis, and chemical signal transduction. The TRP superfamily consists of seven subgroups, one of which is the transient receptor potential vanilloid (trpv) channel family. While trpv channels are relatively well studied in adult vertebrate organisms given their role in functions such as nociception, thermoregulation, and osmotic regulation in mature tissues and organ systems, relatively little is known regarding their function during embryonic development. Although there are some reports of the expression of specific trpv channels at particular stages in various organisms, there is currently no comprehensive analysis of trpv channels during embryogenesis. Here, performing in situ hybridization, we examined the spatiotemporal expression of trpv channel mRNA during early Xenopus laevis embryogenesis. Trpv channels exhibited unique patterns of embryonic expression at distinct locations including the trigeminal ganglia, spinal cord, cement gland, otic vesicle, optic vesicle, nasal placode, notochord, tailbud, proctodeum, branchial arches, epithelium, somite and the animal pole during early development. We have also observed the colocalization of trpv channels at the animal pole (trpv 2/4), trigeminal ganglia (trpv 1/2), and epithelium (trpv 5/6). These localization patterns suggest that trpv channels may play diverse roles during early embryonic development.
Collapse
Affiliation(s)
- Chen Dong
- Department of Biology, Integrated Science Center, 540 Landrum Dr., College of William and Mary, Williamsburg, VA, 23185, USA
| | - Sudip Paudel
- Department of Biology, Integrated Science Center, 540 Landrum Dr., College of William and Mary, Williamsburg, VA, 23185, USA
| | - Nana Yaa Amoh
- Department of Biology, Integrated Science Center, 540 Landrum Dr., College of William and Mary, Williamsburg, VA, 23185, USA
| | - Margaret S Saha
- Department of Biology, Integrated Science Center, 540 Landrum Dr., College of William and Mary, Williamsburg, VA, 23185, USA.
| |
Collapse
|