1
|
Noga M, Jurowski K. Toxicity of Bromo-DragonFLY as a New Psychoactive Substance: Application of In Silico Methods for the Prediction of Key Toxicological Parameters Important to Clinical and Forensic Toxicology. Chem Res Toxicol 2024; 37:1821-1842. [PMID: 39119730 DOI: 10.1021/acs.chemrestox.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Bromo-DragonFLY is a synthetic new psychoactive substance (NPS) that has gained attention due to its powerful and long-lasting hallucinogenic effects, legal status, and widespread availability. This study aimed to use various in silico toxicology methods to predict key toxicological parameters for Bromo-DragonFLY, including acute toxicity (LD50), genotoxicity, cardiotoxicity, health effects, and the potential for endocrine disruption. The results indicate significant acute toxicity with noticeable variations across different species, a low likelihood of genotoxic potential suggesting potential DNA damage, and a notable risk of cardiotoxicity associated with inhibition of the hERG channel. Evaluation of endocrine disruption suggests a low probability of Bromo-DragonFLY interacting with the estrogen receptor α (ER-α), indicating minimal estrogenic activity. These insights from in silico investigations are important for advancing our understanding of this NPS in forensic and clinical toxicology. These initial toxicological examinations establish a foundation for future research efforts and contribute to developing risk assessment and management strategies for using and misusing NPS.
Collapse
Affiliation(s)
- Maciej Noga
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises in Łódź, Ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises in Łódź, Ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
- Laboratory of Innovative Toxicological Research and Analyzes, Institute of Medical Studies, Medical College, Rzeszów University, Al. Mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| |
Collapse
|
2
|
Setlur AS, Karunakaran C, Panhalkar V, Sharma S, Sarkar M, Niranjan V. Multifaceted computational profiling of thymol and geraniol against the human proteome for bio-repellent alternatives: Toxicity predictions, degradation analysis, and quantum mechanical approaches. Acta Trop 2024; 258:107359. [PMID: 39142548 DOI: 10.1016/j.actatropica.2024.107359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
With growing interest in natural compounds as alternative mosquito repellents, assessing the toxicity and structure of potential repellent naturals like thymol (monoterpene phenol) and geraniol (monoterpene alcohol) is vital for understanding their stability and human impact. This study aimed to determine the structural, toxicity, and binding profiles of thymol and geraniol using computational predictions, xTB metadynamics, quantum mechanics, and principal component analysis. Toxicity studies using Protox-II, T.E.S.T, and SwissADME indicated that thymol and geraniol belong to toxicity class 4 and 5, respectively, with low toxicity predictions in other endpoints. Overall pharmacokinetic profile was generated via pkCSM. Off-target predictions via SwissTarget Predictions, LigTMap, Pharmapper, and SuperPred showed that these molecules can bind to 614 human proteins. The degradation of thymol and geraniol were performed using xTB metadynamics and the outcomes showed that the degradants for both compounds were stable and had lower toxicity profile. Nine tautomers were generated via quantum mechanics for thymol and four for geraniol, with RMSD ranging from 3.8 to 6.3 Å for thymol and 3.6 to 4 Å for geraniol after superimpositions. DFT studies found that HOMO-LUMO values and electronegativity parameters of thymol and geraniol did not differ significantly from their isomers. Binding affinity studies against 614 proteins, analysed via PCA and violin plots, highlighted the probable range of binding. These multifaceted in-silico findings corroborate the stability and potential utility of thymol and geraniol as safer alternatives in repellent applications.
Collapse
Affiliation(s)
- Anagha S Setlur
- Department of Biotechnology, RV College of Engineering, Bangalore, Affiliated to Visvesvaraya Technological University (VTU), Belagavi 560018, India
| | - Chandrashekar Karunakaran
- Department of Biotechnology, RV College of Engineering, Bangalore, Affiliated to Visvesvaraya Technological University (VTU), Belagavi 560018, India
| | - Vartul Panhalkar
- Research and Development, Reckitt Benckiser India Pvt. Ltd., Gurgaon, Haryana 122001, India
| | - Sonia Sharma
- Research and Development, Reckitt Benckiser India Pvt. Ltd., Gurgaon, Haryana 122001, India
| | - Manas Sarkar
- Research and Development, Reckitt Benckiser India Pvt. Ltd., Gurgaon, Haryana 122001, India
| | - Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, Bangalore, Affiliated to Visvesvaraya Technological University (VTU), Belagavi 560018, India.
| |
Collapse
|
3
|
Niżnik Ł, Jabłońska K, Orczyk M, Orzechowska M, Toporowska-Kaźmierak J, Sowińska M, Jasińska J, Jurowski K. Toxicity of New Psychoactive Substance (NPS): Threo-4-methylmethylphenidate (4-Mmph) - Prediction of toxicity using in silico methods. Toxicol In Vitro 2024; 99:105891. [PMID: 38972515 DOI: 10.1016/j.tiv.2024.105891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
This study represents the first application of in silico methods to evaluate the toxicity of 4-methylphenidate (4-Mmph), a new psychoactive substance (NPS). Using advanced in silico toxicology tools, it was feasible to anticipate key aspects of 4-Mmph's toxicological profile, including acute toxicity (LD50), genotoxicity, cardiotoxicity, and possible endocrine disruption. The findings indicate significant acute toxicity with variability among species, a high potential for adverse effects in the gastrointestinal system and lungs, a low genotoxic potential, a significant likelihood of skin irritation, and a notable cardiotoxicity risk associated with hERG channel inhibition. Evaluation of endocrine disruption revealed a low likelihood that 4-Mmph interacts with the estrogen receptor alpha (ER-α), indicating minimal estrogenic activity. These insights, derived from in silico studies, play a crucial role in improving the comprehension of 4-Mmph in forensic and clinical toxicology. These initial toxicological inquiries establish the foundation for future investigations and help formulate risk assessment and management strategies regarding the use and abuse of NPS. This article is part of a larger project funded by the Polish Ministry of Education and Science, titled "Toxicovigilance, Poisoning Prevention, and First Aid in Poisoning with Xenobiotics of Current Clinical Importance in Poland" (Grant Number SKN/SP/570184/2023).
Collapse
Affiliation(s)
- Łukasz Niżnik
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises in Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
| | - Karolina Jabłońska
- Toxicological Science Club 'Paracelsus', Institute of Medical Sciences, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Michał Orczyk
- Toxicological Science Club 'Paracelsus', Institute of Medical Sciences, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Martyna Orzechowska
- Toxicological Science Club 'Paracelsus', Institute of Medical Sciences, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Joanna Toporowska-Kaźmierak
- Toxicological Science Club 'Paracelsus', Institute of Medical Sciences, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Marta Sowińska
- Toxicological Science Club 'Paracelsus', Institute of Medical Sciences, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Judyta Jasińska
- Toxicological Science Club 'Paracelsus', Institute of Medical Sciences, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertises in Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland; Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Sciences, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland.
| |
Collapse
|
4
|
Jurowski K, Niżnik Ł. Toxicity of the New Psychoactive Substance (NPS) Clephedrone (4-Chloromethcathinone, 4-CMC): Prediction of Toxicity Using In Silico Methods for Clinical and Forensic Purposes. Int J Mol Sci 2024; 25:5867. [PMID: 38892053 PMCID: PMC11173054 DOI: 10.3390/ijms25115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
This study reports the first application of in silico methods to assess the toxicity of 4-chloromethcathinone (4-CMC), a novel psychoactive substance (NPS). Employing advanced toxicology in silico tools, it was possible to predict crucial aspects of the toxicological profile of 4-CMC, including acute toxicity (LD50), genotoxicity, cardiotoxicity, and its potential for endocrine disruption. The obtained results indicate significant acute toxicity with species-specific variability, moderate genotoxic potential suggesting the risk of DNA damage, and a notable cardiotoxicity risk associated with hERG channel inhibition. Endocrine disruption assessment revealed a low probability of 4-CMC interacting with estrogen receptor alpha (ER-α), suggesting minimal estrogenic activity. These insights, derived from in silico studies, are critical in advancing the understanding of 4-CMC properties in forensic and clinical toxicology. These initial toxicological findings provide a foundation for future research and aid in the formulation of risk assessment and management strategies in the context of the use and abuse of NPSs.
Collapse
Affiliation(s)
- Kamil Jurowski
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Sciences, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland;
| | - Łukasz Niżnik
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland;
| |
Collapse
|
5
|
Zwickl CM, Graham J, Jolly R, Bassan A, Ahlberg E, Amberg A, Anger LT, Barton-Maclaren T, Beilke L, Bellion P, Brigo A, Cronin MT, Custer L, Devlin A, Burleigh-Flayers H, Fish T, Glover K, Glowienke S, Gromek K, Jones D, Karmaus A, Kemper R, Piparo EL, Madia F, Martin M, Masuda-Herrera M, McAtee B, Mestre J, Milchak L, Moudgal C, Mumtaz M, Muster W, Neilson L, Patlewicz G, Paulino A, Roncaglioni A, Ruiz P, Suarez D, Szabo DT, Valentin JP, Vardakou I, Woolley D, Myatt G. Principles and Procedures for Assessment of Acute Toxicity Incorporating In Silico Methods. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 24:100237. [PMID: 36818760 PMCID: PMC9934006 DOI: 10.1016/j.comtox.2022.100237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acute toxicity in silico models are being used to support an increasing number of application areas including (1) product research and development, (2) product approval and registration as well as (3) the transport, storage and handling of chemicals. The adoption of such models is being hindered, in part, because of a lack of guidance describing how to perform and document an in silico analysis. To address this issue, a framework for an acute toxicity hazard assessment is proposed. This framework combines results from different sources including in silico methods and in vitro or in vivo experiments. In silico methods that can assist the prediction of in vivo outcomes (i.e., LD50) are analyzed concluding that predictions obtained using in silico approaches are now well-suited for reliably supporting assessment of LD50-based acute toxicity for the purpose of GHS classification. A general overview is provided of the endpoints from in vitro studies commonly evaluated for predicting acute toxicity (e.g., cytotoxicity/cytolethality as well as assays targeting specific mechanisms). The increased understanding of pathways and key triggering mechanisms underlying toxicity and the increased availability of in vitro data allow for a shift away from assessments solely based on endpoints such as LD50, to mechanism-based endpoints that can be accurately assessed in vitro or by using in silico prediction models. This paper also highlights the importance of an expert review of all available information using weight-of-evidence considerations and illustrates, using a series of diverse practical use cases, how in silico approaches support the assessment of acute toxicity.
Collapse
Affiliation(s)
| | - Jessica Graham
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Robert Jolly
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Arianna Bassan
- Innovatune srl, Via Giulio Zanon 130/D, 35129 Padova, Italy
| | - Ernst Ahlberg
- Universal Prediction AB, Gothenburg, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Alexander Amberg
- Sanofi, R&D Preclinical Safety Frankfurt, Industriepark Hoechst, D-65926 Frankfurt am Main, Germany
| | | | - Tara Barton-Maclaren
- Healthy Environments and Consumer Safety Branch, Health Canada / Government of Canada
| | - Lisa Beilke
- Toxicology Solutions, Inc., 10531 4S Commons Dr. #594, San Diego, CA 92127, USA
| | - Phillip Bellion
- Boehringer Ingelheim Animal Health, Binger Str. 128, 55216 Ingelheim am Rhein, Germany
| | - Alessandro Brigo
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | | | | | - Amy Devlin
- FDA Center for Drug Evaluation and Research, Silver Spring, MD 20993, USA
| | | | - Trevor Fish
- Nelson Laboratories, Salt Lake City, Utah, USA
| | | | | | | | - David Jones
- MHRA, 10 South Colonnade, Canary Wharf, London E14 4PU
| | - Agnes Karmaus
- Integrated Laboratory Systems, LLC, Morrisville, NC, USA
| | | | - Elena Lo Piparo
- Chemical Food Safety Group, Nestlé Research, Lausanne, Switzerland
| | - Federica Madia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | | | - Jordi Mestre
- IMIM Institut Hospital Del Mar d’Investigacions Mèdiques and Universitat Pompeu Fabra, Doctor Aiguader 88, Parc de Recerca Biomèdica, 08003 Barcelona, Spain
- Chemotargets SL, Baldiri Reixac 4, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | | | | | - Moiz Mumtaz
- Office of the Associate Director for Science, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Wolfgang Muster
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | | | - Grace Patlewicz
- Centre for Computational Toxicology and Exposure (CCTE), US Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | - Alessandra Roncaglioni
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Patricia Ruiz
- Centers for Disease Control and Prevention (CDC), Atlanta, GA 30341, USA
| | - Diana Suarez
- FSTox Consulting LTD, 2 Brooks Road Raunds Wellingborough NN9 6NS
| | | | - Jean-Pierre Valentin
- UCB-Biopharma SRL, Development Science, Avenue de l’industrie, Braine l’Alleud, Wallonia, Belgium
| | - Ioanna Vardakou
- British American Tobacco (Investments) Ltd., R&D Centre, Southampton, Hampshire SO15 8TL, UK
| | | | - Glenn Myatt
- Instem, 1393 Dublin Rd, Columbus, OH 43215, USA
| |
Collapse
|