1
|
Hicks SM, Frias JA, Mishra SK, Scotti M, Muscato DR, Valero MC, Adams LM, Cleary JD, Nakamori M, Wang E, Berglund JA. Alternative splicing dysregulation across tissue and therapeutic approaches in a mouse model of myotonic dystrophy type 1. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102338. [PMID: 39391766 PMCID: PMC11465180 DOI: 10.1016/j.omtn.2024.102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024]
Abstract
Myotonic dystrophy type 1 (DM1), the leading cause of adult-onset muscular dystrophy, is caused by a CTG repeat expansion. Expression of the repeat causes widespread alternative splicing (AS) defects and downstream pathogenesis, including significant skeletal muscle impacts. The HSA LR mouse model plays a significant role in therapeutic development. This mouse model features a transgene composed of approximately 220 interrupted CTG repeats, which results in skeletal muscle pathology that mirrors DM1. To better understand this model and the growing number of therapeutic approaches developed with it, we performed a meta-analysis of publicly available RNA sequencing data for AS changes across three widely examined skeletal muscles: quadriceps, gastrocnemius, and tibialis anterior. Our analysis demonstrated that transgene expression correlated with the extent of splicing dysregulation across these muscles from gastrocnemius (highest), quadriceps (medium), to tibialis anterior (lowest). We identified 95 splicing events consistently dysregulated across all examined datasets. Comparison of splicing rescue across seven therapeutic approaches showed a range of rescue across the 95 splicing events from the three muscle groups. This analysis contributes to our understanding of the HSA LR model and the growing number of therapeutic approaches currently in preclinical development for DM1.
Collapse
Affiliation(s)
- Sawyer M. Hicks
- Department of Biological Sciences, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, USA
- The RNA Institute, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, USA
| | - Jesus A. Frias
- Department of Biological Sciences, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, USA
- The RNA Institute, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, USA
| | - Subodh K. Mishra
- The RNA Institute, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, USA
| | - Marina Scotti
- Center for NeuroGenetics and Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32603, USA
| | - Derek R. Muscato
- Center for NeuroGenetics and Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32603, USA
| | - M. Carmen Valero
- Center for NeuroGenetics and Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32603, USA
| | - Leanne M. Adams
- Center for NeuroGenetics and Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32603, USA
| | - John D. Cleary
- The RNA Institute, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, USA
| | - Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Eric Wang
- Center for NeuroGenetics and Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32603, USA
| | - J. Andrew Berglund
- Department of Biological Sciences, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, USA
- The RNA Institute, College of Arts and Sciences, University at Albany, SUNY, Albany, NY 12222, USA
| |
Collapse
|
2
|
Fumoto S, Yamamoto T, Okami K, Maemura Y, Terada C, Yamayoshi A, Nishida K. Understanding In Vivo Fate of Nucleic Acid and Gene Medicines for the Rational Design of Drugs. Pharmaceutics 2021; 13:159. [PMID: 33530309 PMCID: PMC7911509 DOI: 10.3390/pharmaceutics13020159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid and genetic medicines are increasingly being developed, owing to their potential to treat a variety of intractable diseases. A comprehensive understanding of the in vivo fate of these agents is vital for the rational design, discovery, and fast and straightforward development of the drugs. In case of intravascular administration of nucleic acids and genetic medicines, interaction with blood components, especially plasma proteins, is unavoidable. However, on the flip side, such interaction can be utilized wisely to manipulate the pharmacokinetics of the agents. In other words, plasma protein binding can help in suppressing the elimination of nucleic acids from the blood stream and deliver naked oligonucleotides and gene carriers into target cells. To control the distribution of these agents in the body, the ligand conjugation method is widely applied. It is also important to understand intracellular localization. In this context, endocytosis pathway, endosomal escape, and nuclear transport should be considered and discussed. Encapsulated nucleic acids and genes must be dissociated from the carriers to exert their activity. In this review, we summarize the in vivo fate of nucleic acid and gene medicines and provide guidelines for the rational design of drugs.
Collapse
Affiliation(s)
- Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (T.Y.); (K.O.); (Y.M.); (C.T.); (A.Y.); (K.N.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Altamura C, Desaphy JF, Conte D, De Luca A, Imbrici P. Skeletal muscle ClC-1 chloride channels in health and diseases. Pflugers Arch 2020; 472:961-975. [PMID: 32361781 DOI: 10.1007/s00424-020-02376-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
In 1970, the study of the pathomechanisms underlying myotonia in muscle fibers isolated from myotonic goats highlighted the importance of chloride conductance for skeletal muscle function; 20 years later, the human ClC-1 chloride channel has been cloned; last year, the crystal structure of human protein has been solved. Over the years, the efforts of many researchers led to significant advances in acknowledging the role of ClC-1 in skeletal muscle physiology and the mechanisms through which ClC-1 dysfunctions lead to impaired muscle function. The wide spectrum of pathophysiological conditions associated with modification of ClC-1 activity, either as the primary cause, such as in myotonia congenita, or as a secondary adaptive mechanism in other neuromuscular diseases, supports the idea that ClC-1 is relevant to preserve not only for skeletal muscle excitability, but also for skeletal muscle adaptation to physiological or harmful events. Improving this understanding could open promising avenues toward the development of selective and safe drugs targeting ClC-1, with the aim to restore normal muscle function. This review summarizes the most relevant research on ClC-1 channel physiology, associated diseases, and pharmacology.
Collapse
Affiliation(s)
- Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Jean-Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Diana Conte
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|