Hurst V, Gasser SM. The study of protein recruitment to laser-induced DNA lesions can be distorted by photoconversion of the DNA binding dye Hoechst.
F1000Res 2019;
8:104. [PMID:
30828443 PMCID:
PMC6392149 DOI:
10.12688/f1000research.17865.2]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/04/2019] [Indexed: 01/07/2023] Open
Abstract
A commonly used approach for assessing DNA repair factor recruitment in mammalian cells is to induce DNA damage with a laser in the UV or near UV range and follow the local increase of GFP-tagged proteins at the site of damage. Often these measurements are performed in the presence of the blue DNA dye Hoechst, which is used as a photosensitizer. However, a light-induced switch of Hoechst from a blue-light to a green-light emitter will give a false positive signal at the site of damage. Thus, photoconversion signals must be subtracted from the overall green-light emission to determine true recruitment. Here we demonstrate the photoconversion effect and suggest control experiments to exclude false-positive results.
Collapse