1
|
Hinterndorfer K, Laporte MH, Mikus F, Tafur L, Bourgoint C, Prouteau M, Dey G, Loewith R, Guichard P, Hamel V. Ultrastructure expansion microscopy reveals the cellular architecture of budding and fission yeast. J Cell Sci 2022; 135:286062. [PMID: 36524422 PMCID: PMC10112979 DOI: 10.1242/jcs.260240] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT
The budding and fission yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have served as invaluable model organisms to study conserved fundamental cellular processes. Although super-resolution microscopy has in recent years paved the way to a better understanding of the spatial organization of molecules in cells, its wide use in yeasts has remained limited due to the specific know-how and instrumentation required, contrasted with the relative ease of endogenous tagging and live-cell fluorescence microscopy. To facilitate super-resolution microscopy in yeasts, we have extended the ultrastructure expansion microscopy (U-ExM) method to both S. cerevisiae and S. pombe, enabling a 4-fold isotropic expansion. We demonstrate that U-ExM allows imaging of the microtubule cytoskeleton and its associated spindle pole body, notably unveiling the Sfi1p–Cdc31p spatial organization on the appendage bridge structure. In S. pombe, we validate the method by monitoring the homeostatic regulation of nuclear pore complex number through the cell cycle. Combined with NHS-ester pan-labelling, which provides a global cellular context, U-ExM reveals the subcellular organization of these two yeast models and provides a powerful new method to augment the already extensive yeast toolbox.
This article has an associated First Person interview with Kerstin Hinterndorfer and Felix Mikus, two of the joint first authors of the paper.
Collapse
Affiliation(s)
- Kerstin Hinterndorfer
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Marine H. Laporte
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Felix Mikus
- European Molecular Biology Laboratory 2 Cell Biology and Biophysics , , Heidelberg , Germany
| | - Lucas Tafur
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Clélia Bourgoint
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Manoel Prouteau
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Gautam Dey
- European Molecular Biology Laboratory 2 Cell Biology and Biophysics , , Heidelberg , Germany
| | - Robbie Loewith
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Paul Guichard
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| | - Virginie Hamel
- University of Geneva 1 Department of Molecular and Cellular Biology , , Geneva , Switzerland
| |
Collapse
|
2
|
Jiménez-Martín A, Pineda-Santaella A, Pinto-Cruz J, León-Periñán D, García-Sánchez S, Delgado-Gestoso D, Marín-Toral L, Fernández-Álvarez A. The Rabl chromosome configuration masks a kinetochore reassembly mechanism in yeast mitosis. Mol Biol Cell 2022; 33:br8. [PMID: 35274979 PMCID: PMC9282007 DOI: 10.1091/mbc.e20-09-0600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
During cell cycle progression in metazoans, the kinetochore is assembled at mitotic onset and disassembled during mitotic exit. Once assembled, the kinetochore complex attached to centromeres interacts directly with the spindle microtubules, the vehicle of chromosome segregation. This reassembly program is assumed to be absent in budding and fission yeast, because most kinetochore proteins are stably maintained at the centromeres throughout the entire cell cycle. Here, we show that the reassembly program of the outer kinetochore at mitotic onset is unexpectedly conserved in the fission yeast Schizosaccharomyces pombe. We identified this behavior by removing the Rabl chromosome configuration, in which centromeres are permanently associated with the nuclear envelope beneath the spindle pole body during interphase. In addition to having evolutionary implications for kinetochore reassembly, our results aid the understanding of the molecular processes responsible for kinetochore disassembly and assembly during mitotic entry.
Collapse
Affiliation(s)
- Alberto Jiménez-Martín
- Andalusian Center for Developmental Biology (CABD); Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide and Junta de Andalucía, 41013 Seville, Spain
- Instituto de Biología Funcional y Genómica (IBFG); Consejo Superior de Investigaciones Científicas and Universidad de Salamanca, 37007 Salamanca, Spain
| | - Alberto Pineda-Santaella
- Andalusian Center for Developmental Biology (CABD); Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide and Junta de Andalucía, 41013 Seville, Spain
| | - Jesús Pinto-Cruz
- Andalusian Center for Developmental Biology (CABD); Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide and Junta de Andalucía, 41013 Seville, Spain
| | - Daniel León-Periñán
- Andalusian Center for Developmental Biology (CABD); Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide and Junta de Andalucía, 41013 Seville, Spain
| | - Sabas García-Sánchez
- Andalusian Center for Developmental Biology (CABD); Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide and Junta de Andalucía, 41013 Seville, Spain
| | - David Delgado-Gestoso
- Andalusian Center for Developmental Biology (CABD); Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide and Junta de Andalucía, 41013 Seville, Spain
| | - Laura Marín-Toral
- Andalusian Center for Developmental Biology (CABD); Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide and Junta de Andalucía, 41013 Seville, Spain
| | - Alfonso Fernández-Álvarez
- Andalusian Center for Developmental Biology (CABD); Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide and Junta de Andalucía, 41013 Seville, Spain
- Instituto de Biología Funcional y Genómica (IBFG); Consejo Superior de Investigaciones Científicas and Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
3
|
Shelton SN, Smith SE, Jaspersen SL. Split-GFP Complementation to Study the Nuclear Membrane Proteome Using Microscopy. Methods Mol Biol 2022; 2502:205-213. [PMID: 35412240 DOI: 10.1007/978-1-0716-2337-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Defining the proteome of any given subcellular compartment provides insight into the activities and functions within that organelle. Understanding the composition of the nuclear envelope (NE) using traditional methods such as biochemical subcellular fractionation has been challenging due to the continuity of the NE and the endoplasmic reticulum. Here, we describe how split green fluorescent protein (split-GFP) was adapted to determine and define the NE proteome. This system is able to resolve protein topology and distinguish localization to the inner or outer nuclear membranes (INM or ONM).
Collapse
Affiliation(s)
- Shary N Shelton
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sarah E Smith
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
4
|
Geymonat M, Peng Q, Guo Z, Yu Z, Unruh JR, Jaspersen SL, Segal M. Orderly assembly underpinning built-in asymmetry in the yeast centrosome duplication cycle requires cyclin-dependent kinase. eLife 2020; 9:59222. [PMID: 32851976 PMCID: PMC7470843 DOI: 10.7554/elife.59222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Asymmetric astral microtubule organization drives the polarized orientation of the S. cerevisiae mitotic spindle and primes the invariant inheritance of the old spindle pole body (SPB, the yeast centrosome) by the bud. This model has anticipated analogous centrosome asymmetries featured in self-renewing stem cell divisions. We previously implicated Spc72, the cytoplasmic receptor for the gamma-tubulin nucleation complex, as the most upstream determinant linking SPB age, functional asymmetry and fate. Here we used structured illumination microscopy and biochemical analysis to explore the asymmetric landscape of nucleation sites inherently built into the spindle pathway and under the control of cyclin-dependent kinase (CDK). We show that CDK enforces Spc72 asymmetric docking by phosphorylating Nud1/centriolin. Furthermore, CDK-imposed order in the construction of the new SPB promotes the correct balance of nucleation sites between the nuclear and cytoplasmic faces of the SPB. Together these contributions by CDK inherently link correct SPB morphogenesis, age and fate.
Collapse
Affiliation(s)
- Marco Geymonat
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Qiuran Peng
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Zhiang Guo
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, United States
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, United States
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, United States.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, United States
| | - Marisa Segal
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Chen J, Yu Z, Unruh JR, Slaughter BD, Jaspersen SL. Super-resolution Microscopy-based Bimolecular Fluorescence Complementation to Study Protein Complex Assembly and Co-localization. Bio Protoc 2020; 10:e3524. [PMID: 33654748 DOI: 10.21769/bioprotoc.3524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/26/2019] [Accepted: 01/13/2020] [Indexed: 11/02/2022] Open
Abstract
Numerous experimental approaches exist to study interactions between two subunits of a large macromolecular complex. However, most methods do not provide spatial and temporal information about binding, which are critical for dissecting the mechanism of assembly of nanosized complexes in vivo. While recent advances in super-resolution microscopy techniques have provided insights into biological structures beyond the diffraction limit, most require extensive expertise and/or special sample preparation, and it is a challenge to extend beyond binary, two color experiments. Using HyVolution, a super-resolution technique that combines confocal microscopy at sub-airy unit pinhole sizes with computational deconvolution, we achieved 140 nm resolution in both live and fixed samples with three colors, including two fluorescent proteins (mTurquoise2 and GFP) with significant spectral overlap that were distinguished by means of shifting the excitation wavelength away from common wavelengths. By combining HyVolution super-resolution fluorescence microscopy with bimolecular fluorescence complementation (SRM-BiFC), we describe a new assay capable of visualizing protein-protein interactions in vivo at sub-diffraction resolution. This method was used to improve our understanding of the ordered assembly of the Saccharomyces cerevisiae spindle pole body (SPB), a ~1 giga-Dalton heteromeric protein complex formed from 18 structural components present in multiple copies. We propose that SRM-BiFC is a powerful tool for examination of direct interactions between protein complex subunits at sub-diffraction resolution in live cells.
Collapse
Affiliation(s)
- Jingjing Chen
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
6
|
Serfling R, Seidel L, Bock A, Lohse MJ, Annibale P, Coin I. Quantitative Single-Residue Bioorthogonal Labeling of G Protein-Coupled Receptors in Live Cells. ACS Chem Biol 2019; 14:1141-1149. [PMID: 31074969 DOI: 10.1021/acschembio.8b01115] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
High-end microscopy studies of G protein-coupled receptors (GPCRs) require installing onto the receptors bright and photostable dyes. Labeling must occur in quantitative yields, to allow stoichiometric data analysis, and in a minimally invasive fashion, to avoid perturbing GPCR function. We demonstrate here that the genetic incorporation of trans-cyclooct-2-ene lysine (TCO*) allows achieving quantitative single-residue labeling of the extracellular loops of the β2-adrenergic and the muscarinic M2 class A GPCRs, as well as of the corticotropin releasing factor class B GPCR. Labeling occurs within a few minutes by reaction with dye-tetrazine conjugates on the surface of live cells and preserves the functionality of the receptors. To precisely quantify the labeling yields, we devise a method based on fluorescence fluctuation microscopy that extracts the number of labeling sites at the single-cell level. Further, we show that single-residue labeling is better suited for studies of GPCR diffusion than fluorescent-protein tags, since the latter can affect the mobility of the receptor. Finally, by performing dual-color competitive labeling on a single TCO* site, we devise a method to estimate the oligomerization state of a GPCR without the need for a biological monomeric reference, which facilitates the application of fluorescence methods to oligomerization studies. As TCO* and the dye-tetrazines used in this study are commercially available and the described microscopy techniques can be performed on a commercial microscope, we expect our approach to be widely applicable to fluorescence microscopy studies of membrane proteins in general.
Collapse
Affiliation(s)
- Robert Serfling
- University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstr. 34, 04103 Leipzig, Germany
| | - Lisa Seidel
- University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstr. 34, 04103 Leipzig, Germany
| | - Andreas Bock
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Martin J. Lohse
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Paolo Annibale
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Irene Coin
- University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstr. 34, 04103 Leipzig, Germany
| |
Collapse
|