1
|
First NJ, Parrish KM, Martínez-Pérez A, González-Fernández Á, Bharrhan S, Woolard M, McLachlan JB, Scott RS, Wang J, Gestal MC. Bordetella spp. block eosinophil recruitment to suppress the generation of early mucosal protection. Cell Rep 2023; 42:113294. [PMID: 37883230 DOI: 10.1016/j.celrep.2023.113294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/21/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Bordetella spp. are respiratory pathogens equipped with immune evasion mechanisms. We previously characterized a Bordetella bronchiseptica mutant (RB50ΔbtrS) that fails to suppress host responses, leading to rapid clearance and long-lasting immunity against reinfection. This work revealed eosinophils as an exclusive requirement for RB50ΔbtrS clearance. We also show that RB50ΔbtrS promotes eosinophil-mediated B/T cell recruitment and inducible bronchus-associated lymphoid tissue (iBALT) formation, with eosinophils being present throughout iBALT for Th17 and immunoglobulin A (IgA) responses. Finally, we provide evidence that XCL1 is critical for iBALT formation but not maintenance, proposing a novel role for eosinophils as facilitators of adaptive immunity against B. bronchiseptica. RB50ΔbtrS being incapable of suppressing eosinophil effector functions illuminates active, bacterial targeting of eosinophils to achieve successful persistence and reinfection. Overall, our discoveries contribute to understanding cellular mechanisms for use in future vaccines and therapies against Bordetella spp. and extension to other mucosal pathogens.
Collapse
Affiliation(s)
- Nicholas J First
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA
| | - Katelyn M Parrish
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA
| | - Amparo Martínez-Pérez
- CINBIO, Universidade de Vigo, Immunology Group, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Galicia, Spain
| | - África González-Fernández
- CINBIO, Universidade de Vigo, Immunology Group, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Galicia, Spain
| | - Sushma Bharrhan
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA; Immunophenotyping Core, Center for Applied Immunology and Pathological Processes, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA
| | - Matthew Woolard
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA; Immunophenotyping Core, Center for Applied Immunology and Pathological Processes, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Rona S Scott
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA; Bioinformatics and Modeling Core, Center for Applied Immunology and Pathological Processes, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA
| | - Jian Wang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA; Bioinformatics and Modeling Core, Center for Applied Immunology and Pathological Processes, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA
| | - Monica C Gestal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA.
| |
Collapse
|
2
|
Elewa YHA, Abd Elwakil MM, Harashima H, Mohamed SKA, Zahran MH. Microenvironmental Changes in Mediastinal Fat-associated Lymphoid Clusters and Lungs in Early and Late Stages of Metastatic Lung Cancer Induction. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1228-1243. [PMID: 37749682 DOI: 10.1093/micmic/ozad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 09/27/2023]
Abstract
The prognosis of metastatic lung melanoma (MLM) has been reported to be poor. An increasing number of studies have reported the function of several immune cells in cancer regression. Although the function of mediastinal fat-associated lymphoid clusters (MFALCs) in the progression of inflammatory lung lesions has been previously reported, the association between MLM progression and MFALCs development has remained unexplored. Herein, we compared the microenvironmental changes in the lungs and MFALCs among phosphate-buffered saline (PBS) and cancer groups at early (1 week) and late (2 weeks) stages following the intravenous injection of B16-F10 melanoma cells into C57BL/6 mice. Except for lung CD4+ helper T-cells and Iba1+ macrophage populations of early stage, we observed a significant increase in the proliferating and immune cell (CD20+ B-lymphocytes, CD3+ T-lymphocytes, CD8+ cytotoxic T-cells, CD16+ natural killer (NK) cells populations, area of high endothelial venules, and lung lymphatic vessels in cancer groups at both the stages as compared with the PBS groups. Furthermore, a significant positive correlation was observed between immune cell populations in MFALCs and the lungs (B- and T-lymphocytes, and NK cells in both stages). Collectively, our findings suggest a promising cancer therapeutic strategy via targeting immune cells in MFALCs.
Collapse
Affiliation(s)
- Yaser Hosny Ali Elewa
- Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud M Abd Elwakil
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Sherif Kh A Mohamed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Hosny Zahran
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
3
|
Zhang Q, Wu S. Tertiary lymphoid structures are critical for cancer prognosis and therapeutic response. Front Immunol 2023; 13:1063711. [PMID: 36713409 PMCID: PMC9875059 DOI: 10.3389/fimmu.2022.1063711] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Tertiary lymphoid structures (TLSs) are ectopic lymphocyte aggregates that form at sites of chronic inflammation, including cancers, in non-lymphoid tissues. Although the formation of TLSs is similar to that of secondary lymphoid organs, the pathogenic factors leading to TLS formation in cancerous tissues and the mechanisms underlying the role of these structures in the intra-tumoral adaptive antitumor immune response are not fully understood. The presence of TLSs may impact patient prognosis and treatment outcomes. This review examines the current understanding of TLSs in cancers, including their composition and formation as well as their potential to predict prognosis and therapeutic efficacy. We also summarize strategies to induce TLS formation for cancer treatment.
Collapse
Affiliation(s)
| | - Suhui Wu
- Department of Obstetrics and Gynecology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
4
|
Fridman WH, Meylan M, Petitprez F, Sun CM, Italiano A, Sautès-Fridman C. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat Rev Clin Oncol 2022; 19:441-457. [PMID: 35365796 DOI: 10.1038/s41571-022-00619-z] [Citation(s) in RCA: 235] [Impact Index Per Article: 117.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 02/08/2023]
Abstract
B cells are a major component of the tumour microenvironment, where they are predominantly associated with tertiary lymphoid structures (TLS). In germinal centres within mature TLS, B cell clones are selectively activated and amplified, and undergo antibody class switching and somatic hypermutation. Subsequently, these B cell clones differentiate into plasma cells that can produce IgG or IgA antibodies targeting tumour-associated antigens. In tumours without mature TLS, B cells are either scarce or differentiate into regulatory cells that produce immunosuppressive cytokines. Indeed, different tumours vary considerably in their TLS and B cell content. Notably, tumours with mature TLS, a high density of B cells and plasma cells, as well as the presence of antibodies to tumour-associated antigens are typically associated with favourable clinical outcomes and responses to immunotherapy compared with those lacking these characteristics. However, polyclonal B cell activation can also result in the formation of immune complexes that trigger the production of pro-inflammatory cytokines by macrophages and neutrophils. In complement-rich tumours, IgG antibodies can also activate the complement cascade, resulting in the production of anaphylatoxins that sustain tumour-promoting inflammation and angiogenesis. Herein, we review the phenotypic heterogeneity of intratumoural B cells and the importance of TLS in their generation as well as the potential of B cells and TLS as prognostic and predictive biomarkers. We also discuss novel therapeutic approaches that are being explored with the aim of increasing mature TLS formation, B cell differentiation and anti-tumour antibody production within tumours.
Collapse
Affiliation(s)
- Wolf H Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, Equipe inflammation, complément et cancer, Paris, France. .,Equipe labellisée Ligue contre le Cancer, Paris, France.
| | - Maxime Meylan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, Equipe inflammation, complément et cancer, Paris, France.,Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Florent Petitprez
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Cheng-Ming Sun
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, Equipe inflammation, complément et cancer, Paris, France.,Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Antoine Italiano
- Faculty of Medicine, University of Bordeaux, Bordeaux, France.,Department of Medicine, Institute Bergonié, Bordeaux, France
| | - Catherine Sautès-Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, Equipe inflammation, complément et cancer, Paris, France.,Equipe labellisée Ligue contre le Cancer, Paris, France
| |
Collapse
|
5
|
Domblides C, Rochefort J, Riffard C, Panouillot M, Lescaille G, Teillaud JL, Mateo V, Dieu-Nosjean MC. Tumor-Associated Tertiary Lymphoid Structures: From Basic and Clinical Knowledge to Therapeutic Manipulation. Front Immunol 2021; 12:698604. [PMID: 34276690 PMCID: PMC8279885 DOI: 10.3389/fimmu.2021.698604] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
The tumor microenvironment is a complex ecosystem almost unique to each patient. Most of available therapies target tumor cells according to their molecular characteristics, angiogenesis or immune cells involved in tumor immune-surveillance. Unfortunately, only a limited number of patients benefit in the long-term of these treatments that are often associated with relapses, in spite of the remarkable progress obtained with the advent of immune checkpoint inhibitors (ICP). The presence of “hot” tumors is a determining parameter for selecting therapies targeting the patient immunity, even though some of them still do not respond to treatment. In human studies, an in-depth analysis of the organization and interactions of tumor-infiltrating immune cells has revealed the presence of an ectopic lymphoid organization termed tertiary lymphoid structures (TLS) in a large number of tumors. Their marked similarity to secondary lymphoid organs has suggested that TLS are an “anti-tumor school” and an “antibody factory” to fight malignant cells. They are effectively associated with long-term survival in most solid tumors, and their presence has been recently shown to predict response to ICP inhibitors. This review discusses the relationship between TLS and the molecular characteristics of tumors and the presence of oncogenic viruses, as well as their role when targeted therapies are used. Also, we present some aspects of TLS biology in non-tumor inflammatory diseases and discuss the putative common characteristics that they share with tumor-associated TLS. A detailed overview of the different pre-clinical models available to investigate TLS function and neogenesis is also presented. Finally, new approaches aimed at a better understanding of the role and function of TLS such as the use of spheroids and organoids and of artificial intelligence algorithms, are also discussed. In conclusion, increasing our knowledge on TLS will undoubtedly improve prognostic prediction and treatment selection in cancer patients with key consequences for the next generation immunotherapy.
Collapse
Affiliation(s)
- Charlotte Domblides
- Faculté de Médecine Sorbonne Université, Sorbonne Université, UMRS 1135, Paris, France.,Faculté de Médecine Sorbonne Université, INSERM U1135, Paris, France.,Laboratory "Immune microenvironment and immunotherapy", Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France
| | - Juliette Rochefort
- Faculté de Médecine Sorbonne Université, Sorbonne Université, UMRS 1135, Paris, France.,Faculté de Médecine Sorbonne Université, INSERM U1135, Paris, France.,Laboratory "Immune microenvironment and immunotherapy", Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France.,Université de Paris, Faculté de Santé, UFR Odontologie, Paris, France.,Service Odontologie, Assistance Publique Hôpitaux de Paris (AP-HP), La Pitié-Salpêtrière, Paris, France
| | - Clémence Riffard
- Faculté de Médecine Sorbonne Université, Sorbonne Université, UMRS 1135, Paris, France.,Faculté de Médecine Sorbonne Université, INSERM U1135, Paris, France.,Laboratory "Immune microenvironment and immunotherapy", Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France
| | - Marylou Panouillot
- Faculté de Médecine Sorbonne Université, Sorbonne Université, UMRS 1135, Paris, France.,Faculté de Médecine Sorbonne Université, INSERM U1135, Paris, France.,Laboratory "Immune microenvironment and immunotherapy", Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France
| | - Géraldine Lescaille
- Faculté de Médecine Sorbonne Université, Sorbonne Université, UMRS 1135, Paris, France.,Faculté de Médecine Sorbonne Université, INSERM U1135, Paris, France.,Laboratory "Immune microenvironment and immunotherapy", Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France.,Université de Paris, Faculté de Santé, UFR Odontologie, Paris, France.,Service Odontologie, Assistance Publique Hôpitaux de Paris (AP-HP), La Pitié-Salpêtrière, Paris, France
| | - Jean-Luc Teillaud
- Faculté de Médecine Sorbonne Université, Sorbonne Université, UMRS 1135, Paris, France.,Faculté de Médecine Sorbonne Université, INSERM U1135, Paris, France.,Laboratory "Immune microenvironment and immunotherapy", Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France
| | - Véronique Mateo
- Faculté de Médecine Sorbonne Université, Sorbonne Université, UMRS 1135, Paris, France.,Faculté de Médecine Sorbonne Université, INSERM U1135, Paris, France.,Laboratory "Immune microenvironment and immunotherapy", Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France
| | - Marie-Caroline Dieu-Nosjean
- Faculté de Médecine Sorbonne Université, Sorbonne Université, UMRS 1135, Paris, France.,Faculté de Médecine Sorbonne Université, INSERM U1135, Paris, France.,Laboratory "Immune microenvironment and immunotherapy", Centre d'Immunologie et des Maladies Infectieuses Paris (CIMI-Paris), Paris, France
| |
Collapse
|
6
|
Curtis JL. Wouldn't you like to know: are tertiary lymphoid structures necessary for lung defence? Eur Respir J 2021; 57:57/4/2004352. [PMID: 33858851 DOI: 10.1183/13993003.04352-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/08/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Jeffrey L Curtis
- Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA .,Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA.,Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Regard L, Martin C, Teillaud JL, Lafoeste H, Vicaire H, Ladjemi MZ, Ollame-Omvane E, Sibéril S, Burgel PR. Effective control of Staphylococcus aureus lung infection despite tertiary lymphoid structure disorganisation. Eur Respir J 2021; 57:13993003.00768-2020. [PMID: 33093122 DOI: 10.1183/13993003.00768-2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/11/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Tertiary lymphoid structures (TLS) are triggered by persistent bronchopulmonary infection with Staphylococcus aureus, but their roles remain elusive. The present study sought to examine the effects of B- and/or T-cell depletion on S. aureus infection and TLS development (lymphoid neogenesis) in mice. METHODS C57Bl/6 mice were pre-treated with 1) an anti-CD20 monoclonal antibody (mAb) (B-cell depletion) or 2) an anti-CD4 and/or an anti-CD8 mAb (T-cell depletion) or 3) a combination of anti-CD20, anti-CD4 and anti-CD8 mAbs (combined B- and T-cell depletion) or 4) isotype control mAbs. After lymphocyte depletion, mice were infected by intratracheal instillation of agarose beads containing S. aureus (106 CFU per mouse). 14 days later, bacterial load and lung inflammatory cell infiltration were assessed by cultures and immunohistochemistry, respectively. RESULTS 14 days after S. aureus-bead instillation, lung bacterial load was comparable between control and lymphocyte-depleted mice. While TLS were observed in the lungs of infected mice pre-treated with control mAbs, these structures were disorganised or abolished in the lungs of lymphocyte-depleted mice. The absence of CD20+ B-lymphocytes had no effect on CD3+ T-lymphocyte infiltration, whereas CD4+/CD8+ T-cell depletion markedly reduced CD20+ B-cell infiltration. Depletion of CD4+ or CD8+ T-cells separately had limited effect on B-cell infiltration, but led to the absence of germinal centres. CONCLUSION TLS disorganisation is not associated with loss of infection control in mice persistently infected with S. aureus.
Collapse
Affiliation(s)
- Lucile Regard
- Institut Cochin and Université de Paris, INSERM U1016, Paris, France.,Service de Pneumologie, Hôpital Cochin, AP-HP, Paris, France
| | - Clémence Martin
- Institut Cochin and Université de Paris, INSERM U1016, Paris, France.,Service de Pneumologie, Hôpital Cochin, AP-HP, Paris, France
| | - Jean-Luc Teillaud
- Laboratory "Immune Microenvironment and Immunotherapy", Centre d'Immunologie et des Maladies Infectieuses (CIMI), Paris, France.,INSERM UMRS 1135, Faculté de Médecine, Sorbonne Université, Paris, France
| | - Hélène Lafoeste
- Institut Cochin and Université de Paris, INSERM U1016, Paris, France.,Service de Pneumologie, Hôpital Cochin, AP-HP, Paris, France
| | - Hugues Vicaire
- Institut Cochin and Université de Paris, INSERM U1016, Paris, France.,Service de Pneumologie, Hôpital Cochin, AP-HP, Paris, France
| | | | - Emilie Ollame-Omvane
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Sophie Sibéril
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,These authors contributed equally to this work
| | - Pierre-Régis Burgel
- Institut Cochin and Université de Paris, INSERM U1016, Paris, France .,Service de Pneumologie, Hôpital Cochin, AP-HP, Paris, France.,These authors contributed equally to this work
| |
Collapse
|
8
|
Richmond BW, Mansouri S, Serezani A, Novitskiy S, Blackburn JB, Du RH, Fuseini H, Gutor S, Han W, Schaff J, Vasiukov G, Xin MK, Newcomb DC, Jin L, Blackwell TS, Polosukhin VV. Monocyte-derived dendritic cells link localized secretory IgA deficiency to adaptive immune activation in COPD. Mucosal Immunol 2021; 14:431-442. [PMID: 32968197 PMCID: PMC7946625 DOI: 10.1038/s41385-020-00344-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 02/04/2023]
Abstract
Although activation of adaptive immunity is a common pathological feature of chronic obstructive pulmonary disease (COPD), particularly during later stages of the disease, the underlying mechanisms are poorly understood. In small airways of COPD patients, we found that localized disruption of the secretory immunoglobulin A (SIgA)-containing mucosal immunobarrier correlated with lymphocyte accumulation in airway walls and development of tertiary lymphoid structures (TLS) around small airways. In SIgA-deficient mice, we observed bacterial invasion into the airway epithelial barrier with lymphocytic infiltration and TLS formation, which correlated with the progression of COPD-like pathology with advanced age. Depletion of either CD4+ or CD8+ T lymphocytes reduced the severity of emphysema in SIgA-deficient mice, indicating that adaptive immune activation contributes to progressive lung destruction. Further studies revealed that lymphocyte infiltration into the lungs of SIgA-deficient mice was dependent on monocyte-derived dendritic cells (moDCs), which were recruited through a CCR2-dependent mechanism in response to airway bacteria. Consistent with these results, we found that moDCs were increased in lungs of COPD patients, along with CD4+ and CD8+ effector memory T cells. Together, these data indicate that endogenous bacteria in SIgA-deficient airways orchestrate a persistent and pathologic T lymphocyte response through monocyte recruitment and moDC differentiation.
Collapse
Affiliation(s)
- Bradley W. Richmond
- grid.413806.8Department of Veterans Affairs Medical Center, Nashville, TN USA ,grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Samira Mansouri
- grid.15276.370000 0004 1936 8091Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, Gainesville, FL USA
| | - Ana Serezani
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Sergey Novitskiy
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Jessica B. Blackburn
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Rui-Hong Du
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Hubaida Fuseini
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Sergey Gutor
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Wei Han
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Jacob Schaff
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Georgii Vasiukov
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Matthew K. Xin
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Dawn C. Newcomb
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Lei Jin
- grid.15276.370000 0004 1936 8091Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, Gainesville, FL USA
| | - Timothy S. Blackwell
- grid.413806.8Department of Veterans Affairs Medical Center, Nashville, TN USA ,grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Vasiliy V. Polosukhin
- grid.152326.10000 0001 2264 7217Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| |
Collapse
|