1
|
Fletcher K, Michelmore R. Genome-Enabled Insights into Downy Mildew Biology and Evolution. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:165-183. [PMID: 37268005 DOI: 10.1146/annurev-phyto-021622-103440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Oomycetes that cause downy mildew diseases are highly specialized, obligately biotrophic phytopathogens that can have major impacts on agriculture and natural ecosystems. Deciphering the genome sequence of these organisms provides foundational tools to study and deploy control strategies against downy mildew pathogens (DMPs). The recent telomere-to-telomere genome assembly of the DMP Peronospora effusa revealed high levels of synteny with distantly related DMPs, higher than expected repeat content, and previously undescribed architectures. This provides a road map for generating similar high-quality genome assemblies for other oomycetes. This review discusses biological insights made using this and other assemblies, including ancestral chromosome architecture, modes of sexual and asexual variation, the occurrence of heterokaryosis, candidate gene identification, functional validation, and population dynamics. We also discuss future avenues of research likely to be fruitful in studies of DMPs and highlight resources necessary for advancing our understanding and ability to forecast and control disease outbreaks.
Collapse
Affiliation(s)
- Kyle Fletcher
- The Genome Center, University of California, Davis, California, USA
| | - Richard Michelmore
- The Genome Center, University of California, Davis, California, USA
- Department of Plant Sciences; Department of Molecular and Cellular Biology; Department of Medical Microbiology and Immunology, University of California, Davis, California, USA;
| |
Collapse
|
2
|
Cox MP, Guo Y, Winter DJ, Sen D, Cauldron NC, Shiller J, Bradley EL, Ganley AR, Gerth ML, Lacey RF, McDougal RL, Panda P, Williams NM, Grunwald NJ, Mesarich CH, Bradshaw RE. Chromosome-level assembly of the Phytophthora agathidicida genome reveals adaptation in effector gene families. Front Microbiol 2022; 13:1038444. [PMID: 36406440 PMCID: PMC9667082 DOI: 10.3389/fmicb.2022.1038444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/11/2022] [Indexed: 01/25/2023] Open
Abstract
Phytophthora species are notorious plant pathogens, with some causing devastating tree diseases that threaten the survival of their host species. One such example is Phytophthora agathidicida, the causal agent of kauri dieback - a root and trunk rot disease that kills the ancient, iconic and culturally significant tree species, Agathis australis (New Zealand kauri). A deeper understanding of how Phytophthora pathogens infect their hosts and cause disease is critical for the development of effective treatments. Such an understanding can be gained by interrogating pathogen genomes for effector genes, which are involved in virulence or pathogenicity. Although genome sequencing has become more affordable, the complete assembly of Phytophthora genomes has been problematic, particularly for those with a high abundance of repetitive sequences. Therefore, effector genes located in repetitive regions could be truncated or missed in a fragmented genome assembly. Using a combination of long-read PacBio sequences, chromatin conformation capture (Hi-C) and Illumina short reads, we assembled the P. agathidicida genome into ten complete chromosomes, with a genome size of 57 Mb including 34% repeats. This is the first Phytophthora genome assembled to chromosome level and it reveals a high level of syntenic conservation with the complete genome of Peronospora effusa, the only other completely assembled genome sequence of an oomycete. All P. agathidicida chromosomes have clearly defined centromeres and contain candidate effector genes such as RXLRs and CRNs, but in different proportions, reflecting the presence of gene family clusters. Candidate effector genes are predominantly found in gene-poor, repeat-rich regions of the genome, and in some cases showed a high degree of duplication. Analysis of candidate RXLR effector genes that occur in multicopy gene families indicated half of them were not expressed in planta. Candidate CRN effector gene families showed evidence of transposon-mediated recombination leading to new combinations of protein domains, both within and between chromosomes. Further analysis of this complete genome assembly will help inform new methods of disease control against P. agathidicida and other Phytophthora species, ultimately helping decipher how Phytophthora pathogens have evolved to shape their effector repertoires and how they might adapt in the future.
Collapse
Affiliation(s)
- Murray P. Cox
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Yanan Guo
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - David J. Winter
- Institute of Environmental Science and Research (ESR), Porirua, New Zealand
| | | | - Nicholas C. Cauldron
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | | | - Ellie L. Bradley
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Austen R. Ganley
- School of Biological Sciences and Digital Life Institute, University of Auckland, Auckland, New Zealand
| | - Monica L. Gerth
- Bioprotection Aotearoa, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Randy F. Lacey
- Bioprotection Aotearoa, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | | | | | | - Niklaus J. Grunwald
- Horticultural Crops Disease and Pest Management Research Unit, USDA Agricultural Research Service, Corvallis, OR, United States
| | - Carl H. Mesarich
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Rosie E. Bradshaw
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
3
|
Fletcher K, Shin OH, Clark KJ, Feng C, Putman AI, Correll JC, Klosterman SJ, Van Deynze A, Michelmore RW. Ancestral Chromosomes for Family Peronosporaceae Inferred from a Telomere-to-Telomere Genome Assembly of Peronospora effusa. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:450-463. [PMID: 35226812 DOI: 10.1094/mpmi-09-21-0227-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Downy mildew disease of spinach, caused by the oomycete Peronospora effusa, causes major losses to spinach production. In this study, the 17 chromosomes of P. effusa were assembled telomere-to-telomere, using Pacific Biosciences high-fidelity reads. Of these, 16 chromosomes are complete and gapless; chromosome 15 contains one gap bridging the nucleolus organizer region. This is the first telomere-to-telomere genome assembly for an oomycete. Putative centromeric regions were identified on all chromosomes. This new assembly enables a reevaluation of the genomic composition of Peronospora spp.; the assembly was almost double the size and contained more repeat sequences than previously reported for any Peronospora species. Genome fragments consistently underrepresented in six previously reported assemblies of P. effusa typically encoded repeats. Some genes annotated as encoding effectors were organized into multigene clusters on several chromosomes. Putative effectors were annotated on 16 of the 17 chromosomes. The intergenic distances between annotated genes were consistent with compartmentalization of the genome into gene-dense and gene-sparse regions. Genes encoding putative effectors were enriched in gene-sparse regions. The near-gapless assembly revealed apparent horizontal gene transfer from Ascomycete fungi. Gene order was highly conserved between P. effusa and the genetically oriented assembly of the oomycete Bremia lactucae; high levels of synteny were also detected with Phytophthora sojae. Extensive synteny between phylogenetically distant species suggests that many other oomycete species may have similar chromosome organization. Therefore, this assembly provides the foundation for genomic analyses of diverse oomycetes.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Kyle Fletcher
- The Genome Center, University of California, Davis, CA, U.S.A
| | - Oon-Ha Shin
- Seed Biotechnology Center, Department of Plant Sciences, University of California, Davis, CA, U.S.A
| | - Kelley J Clark
- United States Department of Agriculture-Agricultural Research Station, 1636 East Alisal Street, Salinas, CA, U.S.A
- Department of Entomology & Plant Pathology, University of Arkansas, Fayetteville, AR, U.S.A
| | - Chunda Feng
- Department of Entomology & Plant Pathology, University of Arkansas, Fayetteville, AR, U.S.A
| | - Alexander I Putman
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, U.S.A
| | - James C Correll
- Department of Entomology & Plant Pathology, University of Arkansas, Fayetteville, AR, U.S.A
| | - Steven J Klosterman
- United States Department of Agriculture-Agricultural Research Station, 1636 East Alisal Street, Salinas, CA, U.S.A
| | - Allen Van Deynze
- Seed Biotechnology Center, Department of Plant Sciences, University of California, Davis, CA, U.S.A
| | - Richard W Michelmore
- The Genome Center, University of California, Davis, CA, U.S.A
- Departments of Plant Sciences, Molecular & Cellular Biology, Medical Microbiology & Immunology, University of California, Davis, CA, U.S.A
| |
Collapse
|
4
|
Engelbrecht J, Duong TA, Prabhu SA, Seedat M, van den Berg N. Genome of the destructive oomycete Phytophthora cinnamomi provides insights into its pathogenicity and adaptive potential. BMC Genomics 2021; 22:302. [PMID: 33902447 PMCID: PMC8074420 DOI: 10.1186/s12864-021-07552-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/24/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Phytophthora cinnamomi is an oomycete pathogen of global relevance. It is considered as one of the most invasive species, which has caused irreversible damage to natural ecosystems and horticultural crops. There is currently a lack of a high-quality reference genome for this species despite several attempts that have been made towards sequencing its genome. The lack of a good quality genome sequence has been a setback for various genetic and genomic research to be done on this species. As a consequence, little is known regarding its genome characteristics and how these contribute to its pathogenicity and invasiveness. RESULTS In this work we generated a high-quality genome sequence and annotation for P. cinnamomi using a combination of Oxford Nanopore and Illumina sequencing technologies. The annotation was done using RNA-Seq data as supporting gene evidence. The final assembly consisted of 133 scaffolds, with an estimated genome size of 109.7 Mb, N50 of 1.18 Mb, and BUSCO completeness score of 97.5%. Genome partitioning analysis revealed that P. cinnamomi has a two-speed genome characteristic, similar to that of other oomycetes and fungal plant pathogens. In planta gene expression analysis revealed up-regulation of pathogenicity-related genes, suggesting their important roles during infection and host degradation. CONCLUSION This study has provided a high-quality reference genome and annotation for P. cinnamomi. This is among the best assembled genomes for any Phytophthora species assembled to date and thus resulted in improved identification and characterization of pathogenicity-related genes, some of which were undetected in previous versions of genome assemblies. Phytophthora cinnamomi harbours a large number of effector genes which are located in the gene-poor regions of the genome. This unique genomic partitioning provides P. cinnamomi with a high level of adaptability and could contribute to its success as a highly invasive species. Finally, the genome sequence, its annotation and the pathogenicity effectors identified in this study will serve as an important resource that will enable future studies to better understand and mitigate the impact of this important pathogen.
Collapse
Affiliation(s)
- Juanita Engelbrecht
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa.
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - S Ashok Prabhu
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Mohamed Seedat
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Noëlani van den Berg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|