1
|
Wang Y, Li X, Xu Q, Niu X, Zhang S, Qu X, Chu H, Chen J, Shi Q, Zhang E, Zhang G. Characterization of Neutralizing Monoclonal Antibodies and Identification of a Novel Conserved C-Terminal Linear Epitope on the Hemagglutinin Protein of the H9N2 Avian Influenza Virus. Viruses 2022; 14:v14112530. [PMID: 36423139 PMCID: PMC9698441 DOI: 10.3390/v14112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
The H9N2 avian influenza virus (AIV) remains a serious threat to the global poultry industry and public health. The hemagglutinin (HA) protein is an essential protective antigen of AIVs and a major target of neutralizing antibodies and vaccines. Therefore, in this study, we used rice-derived HA protein as an immunogen to generate monoclonal antibodies (mAbs) and screened them using an immunoperoxidase monolayer assay and indirect enzyme-linked immunosorbent assay. Eight mAbs reacted well with the recombinant H9N2 AIV and HA protein, four of which exhibited potent inhibitory activity against hemagglutination, while three showed remarkable neutralization capacities. Western blotting confirmed that two mAbs bound to the HA protein. Linear epitopes were identified using the mAbs; a novel linear epitope, 480HKCDDQCM487, was identified. Structural analysis revealed that the novel linear epitope is located at the C-terminus of HA2 near the disulfide bond-linked HA1 and HA2. Alignment of the amino acid sequences showed that the epitope was highly conserved among multiple H9N2 AIV strains. The results of this study provide novel insights for refining vaccine and diagnostic strategies and expand our understanding of the immune response against AIV.
Collapse
Affiliation(s)
- Yanan Wang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
- International Associated Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xueyang Li
- International Associated Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Qianru Xu
- International Associated Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xiangxiang Niu
- International Associated Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Shenli Zhang
- International Associated Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaotian Qu
- International Associated Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Hongyan Chu
- International Associated Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Jinxuan Chen
- International Associated Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Qianqian Shi
- International Associated Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Erqin Zhang
- International Associated Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Longhu Modern Immunity Laboratory, Zhengzhou 450046, China
- Correspondence: (E.Z.); (G.Z.)
| | - Gaiping Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
- International Associated Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Longhu Modern Immunity Laboratory, Zhengzhou 450046, China
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225000, China
- Correspondence: (E.Z.); (G.Z.)
| |
Collapse
|
2
|
Jing X, Yao Y, Wu D, Hong H, Feng X, Xu N, Liu Y, Liang H. IFP35 family proteins promote neuroinflammation and multiple sclerosis. Proc Natl Acad Sci U S A 2021; 118:e2102642118. [PMID: 34362845 PMCID: PMC8364186 DOI: 10.1073/pnas.2102642118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Excessive activation of T cells and microglia represents a hallmark of the pathogenesis of human multiple sclerosis (MS). However, the regulatory molecules overactivating these immune cells remain to be identified. Previously, we reported that extracellular IFP35 family proteins, including IFP35 and NMI, activated macrophages as proinflammatory molecules in the periphery. Here, we investigated their functions in the process of neuroinflammation both in the central nervous system (CNS) and the periphery. Our analysis of clinical transcriptomic data showed that expression of IFP35 family proteins was up-regulated in patients with MS. Additional in vitro studies demonstrated that IFP35 and NMI were released by multiple cells. IFP35 and NMI subsequently triggered nuclear factor kappa B-dependent activation of microglia via the TLR4 pathway. Importantly, we showed that both IFP35 and NMI activated dendritic cells and promoted naïve T cell differentiation into Th1 and Th17 cells. Nmi-/- , Ifp35-/- , or administration of neutralizing antibodies against IFP35 alleviated the immune cells' infiltration and demyelination in the CNS, thus reducing the severity of experimental autoimmune encephalomyelitis. Together, our findings reveal a hitherto unknown mechanism by which IFP35 family proteins facilitate overactivation of both T cells and microglia and propose avenues to study the pathogenesis of MS.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/pharmacology
- Case-Control Studies
- Dendritic Cells/immunology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Humans
- Intracellular Signaling Peptides and Proteins/blood
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/immunology
- Intracellular Signaling Peptides and Proteins/metabolism
- Lysophosphatidylcholines/toxicity
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Microglia/metabolism
- Microglia/pathology
- Multiple Sclerosis/genetics
- Multiple Sclerosis/pathology
- Neuroinflammatory Diseases/genetics
- Neuroinflammatory Diseases/pathology
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Mice
Collapse
Affiliation(s)
- Xizhong Jing
- School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Yongjie Yao
- School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Danning Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Hao Hong
- School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Xu Feng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Na Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yingfang Liu
- School of Medicine, Sun Yat-sen University, Shenzhen 518107, China;
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Huanhuan Liang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China;
| |
Collapse
|
3
|
Liu Y, Wang J, Chen Y, Wang A, Wei Q, Yang S, Feng H, Chai S, Liu D, Zhang G. Identification of a dominant linear epitope on the VP2 capsid protein of porcine parvovirus and characterization of two monoclonal antibodies with neutralizing abilities. Int J Biol Macromol 2020; 163:2013-2022. [PMID: 32931829 DOI: 10.1016/j.ijbiomac.2020.09.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
Porcine parvovirus (PPV) is a major cause of reproductive failure in swine, and has caused huge losses throughout the world. The structural viral protein VP2, which is able to self-assemble into empty capsids, known as virus-like particles (VLPs), is crucial to induce PPV-specific neutralizing antibodies and protective immunity. In this study, twelve monoclonal antibodies (mAbs) against PPV were generated. The mAbs were characterized by indirect enzyme-linked immunosorbent assay (ELISA), western blotting (WB) and virus neutralization (VN) assay. Two mAbs were defined to be able to neutralize the standard PPV 7909 strain. Subsequently, peptide scanning was applied to identify linear epitopes. The peptide, 89ESGVAGQMV97 was defined as a precise linear epitope. Results from structural analysis showed that the epitope was exposed on the virion surface. Multiple sequence alignment analysis indicated that peptide 89ESGVAGQMV97 was not completely conserved, with a higher amino acid mutation rate at 91G, 92V and 93A position. Alanine-scanning mutagenesis further revealed that residues 89E, 90S, 91G, 92V and 94G were the core sites involved in antibody recognition. These findings may facilitate further understanding the function of the VP2 protein and development of diagnostic tools.
Collapse
Affiliation(s)
- Yunchao Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Jucai Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Suzhen Yang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Hua Feng
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Shujun Chai
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Dongmin Liu
- Henan Zhongze Biological Engineering Co., Ltd, Zhengzhou, China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Zhongze Biological Engineering Co., Ltd, Zhengzhou, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China.
| |
Collapse
|