1
|
Lu Y, Ma J, Lin J, Tian Y, Ma Y, Wang W, Li J, Zhang H, Jiao P. Cell membrane breakage and triggering T cell infiltration are involved in human telomerase reverse transcriptase (hTERT) promoter-driven novel peptide KK-64 for liver cancer gene therapy. Bioengineered 2021; 12:12708-12721. [PMID: 34898368 PMCID: PMC8809941 DOI: 10.1080/21655979.2021.2010314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/11/2022] Open
Abstract
Liver cancer is an aggressive malignancy with exhibits both high mortality and morbidity. The current treatment options are associated with several limitations, novel specific anti-cancer drugs are urgently needed to improve liver cancer treatment. In this study, a new peptide KK-64 was designed, and it showed strong cytotoxicity against liver cancer cells. To obtain the tumor targeting property, a plasmid that contains KK-64 DNA fragment and driven by human telomerase reverse transcriptase (hTERT) promoter was constructed. pcTERT-kk-64 plasmid was found to specifically inhibit the viability of liver cancer cells HepG2, induce substantial apoptosis as well as damage to the cell membranes, but had minimal effects toward normal liver HL-7702 cells. Furthermore, pcTERT-kk-64 plasmids was also noted to significantly attenuate migration and invasion of HepG2 cells. The anti-tumor effect of pcTERT-kk-64 plasmid was also observed in H22 cell-bearing mice, and it appeared to cause significant tumor regression, trigger tumor cell apoptosis, and infiltrate cytotoxicity T cells to the tumor tissues after plasmids injection. Thus, pcTERT-kk-64 plasmids showed both strong cytotoxicity and tumor selectivity in vitro and in tumor-bearing mice in liver cancer models.
Collapse
Affiliation(s)
- Yuanhua Lu
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jie Ma
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jian Lin
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yafei Tian
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yongjun Ma
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Wei Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Jialin Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Hugang Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Ping Jiao
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| |
Collapse
|
2
|
Lee M, Lu ZH, Li J, Kashentseva EA, Dmitriev IP, Mendonca SA, Curiel DT. Targeting Tumor Neoangiogenesis via Targeted Adenoviral Vector to Achieve Effective Cancer Gene Therapy for Disseminated Neoplastic Disease. Mol Cancer Ther 2020; 19:966-971. [PMID: 31907220 DOI: 10.1158/1535-7163.mct-19-0768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/24/2019] [Accepted: 12/31/2019] [Indexed: 11/16/2022]
Abstract
The application of cancer gene therapy has heretofore been restricted to local, or locoregional, neoplastic disease contexts. This is owing to the lack of gene transfer vectors, which embody the requisite target cell selectivity in vivo required for metastatic disease applications. To this end, we have explored novel vector engineering paradigms to adapt adenovirus for this purpose. Our novel strategy exploits three distinct targeting modalities that operate in functional synergy. Transcriptional targeting is achieved via the hROBO4 promoter, which restricts transgene expression to proliferative vascular endothelium. Viral binding is modified by incorporation of an RGD4C peptide in the HI loop of the fiber knob for recognition of cellular integrins. Liver sequestration is mitigated by ablation of factor X binding to the major capsid protein hexon by a serotype swap approach. The combination of these technologies into the context of a single-vector agent represents a highly original approach. Studies in a murine model of disseminated cancer validated the in vivo target cell selectivity of our vector agent. Of note, clear gains in therapeutic index accrued these vector modifications. Whereas there is universal recognition of the value of vector targeting, very few reports have validated its direct utility in the context of cancer gene therapy. In this regard, our article validates the direct gains that may accrue these methods in the stringent delivery context of disseminated neoplastic disease. Efforts to improve vector targeting thus represent a critical direction to fully realize the promise of cancer gene therapy.
Collapse
Affiliation(s)
- Myungeun Lee
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Zhi Hong Lu
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Jie Li
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Elena A Kashentseva
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Igor P Dmitriev
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Samir A Mendonca
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - David T Curiel
- Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri. .,Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|