1
|
Lundy DJ, Szomolay B, Liao CT. Systems Approaches to Cell Culture-Derived Extracellular Vesicles for Acute Kidney Injury Therapy: Prospects and Challenges. FUNCTION 2024; 5:zqae012. [PMID: 38706963 PMCID: PMC11065115 DOI: 10.1093/function/zqae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 05/07/2024] Open
Abstract
Acute kidney injury (AKI) is a heterogeneous syndrome, comprising diverse etiologies of kidney insults that result in high mortality and morbidity if not well managed. Although great efforts have been made to investigate underlying pathogenic mechanisms of AKI, there are limited therapeutic strategies available. Extracellular vesicles (EV) are membrane-bound vesicles secreted by various cell types, which can serve as cell-free therapy through transfer of bioactive molecules. In this review, we first overview the AKI syndrome and EV biology, with a particular focus on the technical aspects and therapeutic application of cell culture-derived EVs. Second, we illustrate how multi-omic approaches to EV miRNA, protein, and genomic cargo analysis can yield new insights into their mechanisms of action and address unresolved questions in the field. We then summarize major experimental evidence regarding the therapeutic potential of EVs in AKI, which we subdivide into stem cell and non-stem cell-derived EVs. Finally, we highlight the challenges and opportunities related to the clinical translation of animal studies into human patients.
Collapse
Affiliation(s)
- David J Lundy
- Graduate Institute of Biomedical Materials & Tissue Engineering, Taipei Medical University, Taipei 235603, Taiwan
- International PhD Program in Biomedical Engineering, Taipei Medical University, Taipei 235603, Taiwan
- Center for Cell Therapy, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Barbara Szomolay
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Chia-Te Liao
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
2
|
Rishan ST, Kline RJ, Rahman MS. New prospects of environmental RNA metabarcoding research in biological diversity, ecotoxicological monitoring, and detection of COVID-19: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11406-11427. [PMID: 38183542 DOI: 10.1007/s11356-023-31776-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
Ecosystems are multifaceted and complex systems and understanding their composition is crucial for the implementation of efficient conservation and management. Conventional approaches to biodiversity surveys can have limitations in detecting the complete range of species present. In contrast, the study of environmental RNA (eRNA) offers a non-invasive and comprehensive method for monitoring and evaluating biodiversity across different ecosystems. Similar to eDNA, the examination of genetic material found in environmental samples can identify and measure many species, including ones that pose challenges to traditional methods. However, eRNA is degraded quickly and therefore shows promise in detection of living organisms closer to their actual location than eDNA methods. This method provides a comprehensive perspective on the well-being of ecosystems, facilitating the development of focused conservation approaches to save at-risk species and uphold ecological equilibrium. Furthermore, eRNA has been recognized as a valuable method for the identification of COVID-19 in the environment, besides its established uses in biodiversity protection. The SARS-CoV-2 virus, which is accountable for the worldwide epidemic, releases RNA particles into the surrounding environment via human waste, providing insights into the feasibility of detecting it in wastewater and other samples taken from the environment. In this article, we critically reviewed the recent research activities that use the eRNA method, including its utilization in biodiversity conservation, ecological surveillance, and ecotoxicological monitoring as well as its innovative potential in identifying COVID-19. Through this review, the reader can understand the recent developments, prospects, and challenges of eRNA research in ecosystem management and biodiversity conservation.
Collapse
Affiliation(s)
- Sakib Tahmid Rishan
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Richard J Kline
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA.
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA.
| |
Collapse
|
3
|
Zhang Y, Gao J, Cao L, Du J, Xu G, Xu P. Microcystin-LR-induced autophagy via miR-282-5p/PIK3R1 pathway in Eriocheir sinensis hepatopancreas. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115661. [PMID: 37948941 DOI: 10.1016/j.ecoenv.2023.115661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
With the intensifying climate warming, blue-green algae blooms have become more frequent and severe, releasing environmental hazards such as microcystin that pose potential threats to human and animal health. Autophagy has been shown to play a crucial role in regulating immune responses induced by environmental hazards, enabling cells to adapt to stress and protect against damage. Although microcystin-LR (MC-LR) has been identified to affect autophagy in mammalian, its impact on aquatic animals has been poorly studied. To investigate the toxicological effects of MC-LR in aquatic ecosystems, we constructed a microRNA profile of acute MC-LR stress in the hepatopancreas of the Chinese mitten crab. Interestingly, we found the MC-LR exposure activated autophagy in the hepatopancreas based on the following evidence. Specifically, mRNA expression level of ATG7, Beclin1 and Gabarap was significantly up-regulated, autophagy regulatory pathways were significantly enriched, and numerous autolysosomes and autophagosomes were observed. Additionally, we found that miR-282-5p and its target gene PIK3R1 played important regulatory roles in autophagy by in vivo and in vitro experiments. Overexpression of miR-282-5p mimicked MC-LR-induced autophagy by inhibiting PIK3R1 expression, while miR-282-5p silencing inhibited autophagy by promoting PIK3R1 expression. Altogether, our findings suggest that MC-LR increases miR-282-5p, which then targets inhibition of PIK3R1 to stimulate autophagy. This study focused on the stress response regulatory mechanisms of juvenile crabs to toxic pollutants in water, offering a potential target for alleviating the toxicity of MC-LR. These findings lay a foundation for reducing the toxicity of MC-LR and environmental hazards in organisms.
Collapse
Affiliation(s)
- Yuning Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Jiancao Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Liping Cao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jinliang Du
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
4
|
Kariuki D, Asam K, Aouizerat BE, Lewis KA, Florez JC, Flowers E. Review of databases for experimentally validated human microRNA-mRNA interactions. Database (Oxford) 2023; 2023:7142843. [PMID: 37098414 PMCID: PMC10129384 DOI: 10.1093/database/baad014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/13/2023] [Accepted: 03/09/2023] [Indexed: 04/27/2023]
Abstract
MicroRNAs (miRs) may contribute to disease etiology by influencing gene expression. Numerous databases are available for miR target prediction and validation, but their functionality is varied, and outputs are not standardized. The purpose of this review is to identify and describe databases for cataloging validated miR targets. Using Tools4miRs and PubMed, we identified databases with experimentally validated targets, human data, and a focus on miR-messenger RNA (mRNA) interactions. Data were extracted about the number of times each database was cited, the number of miRs, the target genes, the interactions per database, experimental methodology and key features of each database. The search yielded 10 databases, which in order of most cited to least were: miRTarBase, starBase/The Encyclopedia of RNA Interactomes, DIANA-TarBase, miRWalk, miRecords, miRGator, miRSystem, miRGate, miRSel and targetHub. Findings from this review suggest that the information presented within miR target validation databases can be enhanced by adding features such as flexibility in performing queries in multiple ways, downloadable data, ongoing updates and integrating tools for further miR-mRNA target interaction analysis. This review is designed to aid researchers, especially those new to miR bioinformatics tools, in database selection and to offer considerations for future development and upkeep of validation tools. Database URL http://mirtarbase.cuhk.edu.cn/.
Collapse
Affiliation(s)
- Dorian Kariuki
- Department of Physiological Nursing, University of California, San Francisco, CA 94143, USA
| | - Kesava Asam
- Bluestone Center for Clinical Research, New York University, New York, CA 10010, USA
| | - Bradley E Aouizerat
- Bluestone Center for Clinical Research, New York University, New York, CA 10010, USA
- Department of Oral and Maxillofacial Surgery, New York University, New York, CA 10010, USA
| | - Kimberly A Lewis
- Department of Physiological Nursing, University of California, San Francisco, CA 94143, USA
| | - Jose C Florez
- Department of Medicine, Center for Genomic Medicine and Diabetes Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA 02142, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Elena Flowers
- Department of Physiological Nursing, University of California, San Francisco, CA 94143, USA
- Institute for Human Genetics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
5
|
In silico and in vitro analysis of microRNAs with therapeutic potential in atherosclerosis. Sci Rep 2022; 12:20334. [PMID: 36433987 PMCID: PMC9700707 DOI: 10.1038/s41598-022-24260-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease in which aberrant lipid metabolism plays a key role. MicroRNAs (miRNAs), micro-coordinators of gene expression, have been recently proposed as novel clinical biomarkers and potential therapeutic tools for a broad spectrum of diseases. This study aimed to identify miRNAs with therapeutic potential in atherosclerosis. Bioinformatic databases, including experimentally validated and computational prediction tools as well as a novel combination method, were used to identify miRNAs that are able to simultaneously inhibit key genes related to the pathogenesis of atherosclerosis. Further validation of genes and miRNAs was conducted using the STRING online tool, KEGG pathway analysis and DIANA-miRPath. The inhibitory effects of the identified miRNAs in HepG2 and Huh7 cells were verified by real-time PCR. The MTT assay was utilized to evaluate cell cytotoxicity effects of miRNAs. Atherosclerotic drug-targeted genes were selected as key genes. Strong interactions between genes were confirmed using STRING. These genes were shown to be integral to critical pathological processes involved in atherosclerosis. A novel combined method of validated and predicted tools for the identification of effective miRNAs was defined as the combination score (C-Score). Bioinformatic analysis showed that hsa-miR-124-3p and hsa-miR-16-5p possessed the best C-Score (0.68 and 0.62, respectively). KEGG and DIANA-miRPath analysis showed that selected genes and identified miRNAs were involved in atherosclerosis-related pathways. Compared with the controls in both HepG2 and Huh7 cell lines, miR-124 significantly reduced the expression of CETP, PCSK9, MTTP, and APOB, and miR-16 significantly reduced the expression of APOCIII, CETP, HMGCR, PCSK9, MTTP, and APOB, respectively. The cytotoxicity assay showed that miR-124 reduced cell viability, especially after 72 h; however, miR-16 did not show any significant cytotoxicity in either cell line. Our findings indicate that hsa-miR-124 and miR-16 have potential for use as therapeutic candidates in the treatment of atherosclerosis.
Collapse
|
6
|
Jain CK, Srivastava P, Pandey AK, Singh N, Kumar RS. miRNA therapeutics in precision oncology: a natural premium to nurture. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:511-532. [PMID: 36071981 PMCID: PMC9446160 DOI: 10.37349/etat.2022.00098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
The dynamic spectrum of microRNA (miRNA) has grown significantly over the years with its identification and exploration in cancer therapeutics and is currently identified as an important resource for innovative strategies due to its functional behavior for gene regulation and modulation of complex biological networks. The progression of cancer is the consequence of uncontrolled, nonsynchronous procedural faults in the biological system. Diversified and variable cellular response of cancerous cells has always raised challenges in effective cancer therapy. miRNAs, a class of non-coding RNAs (ncRNAs), are the natural genetic gift, responsible to preserve the homeostasis of cell to nurture. The unprecedented significance of endogenous miRNAs has exhibited promising therapeutic potential in cancer therapeutics. Currently, miRNA mimic miR-34, and an antimiR aimed against miR-122 has entered the clinical trials for cancer treatments. This review, highlights the recent breakthroughs, challenges, clinical trials, and advanced delivery vehicles in the administration of miRNA therapies for precision oncology.
Collapse
Affiliation(s)
- Chakresh Kumar Jain
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Poornima Srivastava
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Nisha Singh
- Department of Bioinformatics, Gujarat Biotechnology University, Gandhinagar, GIFT city 382355, India
| | - R Suresh Kumar
- Molecular Genetics Lab, Molecular Biology Group, National Institute of Cancer Prevention and Research (ICMR), Noida 201307, India
| |
Collapse
|
7
|
Bai CM, Zhang X, Venier P, Gu L, Li YN, Wang CM, Xin LS, Rosani U. Paired miRNA and RNA sequencing provides a first insight into molecular defense mechanisms of Scapharca broughtonii during ostreid herpesvirus-1 infection. FISH & SHELLFISH IMMUNOLOGY 2022; 122:225-233. [PMID: 35150830 DOI: 10.1016/j.fsi.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Ostreid herpesvirus 1 (OsHV-1) infection caused mortalities with relevant economic losses in bivalve aquaculture industry worldwide. Initially described as an oyster pathogen, OsHV-1 can infect other bivalve species, like the blood clam Scapharca broughtonii. However, at present, little is known about the molecular interactions during OsHV-1 infection in the blood clam. We produced paired miRNA and total RNA-seq data to investigate the blood clam transcriptional changes from 0 to 72 h after experimental infection with OsHV-1. High-throughput miRNA sequencing of 24 libraries revealed 580 conserved and 270 new blood clam miRNAs, whereas no genuine miRNA was identified for OsHV-1. Total 88-203 differently expressed miRNAs were identified per time point, mostly up-regulated and mainly targeting metabolic pathways. Most of the blood clam mRNAs, in contrast, were down-regulated up to 60 h post-injection, with the trend analysis revealing the activation of immune genes only when comparing the early and latest stage of infection. Taken together, paired short and long RNA data suggested a miRNA-mediated down-regulation of host metabolic and energetic processes as a possible antiviral strategy during early infection stages, whereas antiviral pathways appeared upregulated only at late infection.
Collapse
Affiliation(s)
- Chang-Ming Bai
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xiang Zhang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; College of Fisheries, Tianjin Agriculture University, Tianjin, 300380, China
| | - Paola Venier
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Li Gu
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; College of Fisheries, Tianjin Agriculture University, Tianjin, 300380, China
| | - Ya-Nan Li
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Chong-Ming Wang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Lu-Sheng Xin
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Umberto Rosani
- Department of Biology, University of Padova, 35121, Padova, Italy.
| |
Collapse
|
8
|
Xu M, Chen Y, Xu Z, Zhang L, Jiang H, Pian C. MiRLoc: predicting miRNA subcellular localization by incorporating miRNA-mRNA interactions and mRNA subcellular localization. Brief Bioinform 2022; 23:6532537. [PMID: 35183063 DOI: 10.1093/bib/bbac044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/17/2022] [Accepted: 01/28/2022] [Indexed: 12/19/2022] Open
Abstract
Subcellular localization of microRNAs (miRNAs) is an important reflection of their biological functions. Considering the spatio-temporal specificity of miRNA subcellular localization, experimental detection techniques are expensive and time-consuming, which strongly motivates an efficient and economical computational method to predict miRNA subcellular localization. In this paper, we describe a computational framework, MiRLoc, to predict the subcellular localization of miRNAs. In contrast to existing methods, MiRLoc uses the functional similarity between miRNAs instead of sequence features and incorporates information about the subcellular localization of the corresponding target mRNAs. The results show that miRNA functional similarity data can be effectively used to predict miRNA subcellular localization, and that inclusion of subcellular localization information of target mRNAs greatly improves prediction performance.
Collapse
Affiliation(s)
- Mingmin Xu
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuanyuan Chen
- College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhihui Xu
- Simcere Diagnostics Co., Ltd., Nanjing, Jiangsu, China
| | - Liangyun Zhang
- College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hangjin Jiang
- Center for Data Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cong Pian
- College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China.,Simcere Diagnostics Co., Ltd., Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Letafati A, Najafi S, Mottahedi M, Karimzadeh M, Shahini A, Garousi S, Abbasi-Kolli M, Sadri Nahand J, Tamehri Zadeh SS, Hamblin MR, Rahimian N, Taghizadieh M, Mirzaei H. MicroRNA let-7 and viral infections: focus on mechanisms of action. Cell Mol Biol Lett 2022; 27:14. [PMID: 35164678 PMCID: PMC8853298 DOI: 10.1186/s11658-022-00317-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are fundamental post-transcriptional modulators of several critical cellular processes, a number of which are involved in host defense mechanisms. In particular, miRNA let-7 functions as an essential regulator of the function and differentiation of both innate and adaptive immune cells. Let-7 is involved in several human diseases, including cancer and viral infections. Several viral infections have found ways to dysregulate the expression of miRNAs. Extracellular vesicles (EV) are membrane-bound lipid structures released from many types of human cells that can transport proteins, lipids, mRNAs, and miRNAs, including let-7. After their release, EVs are taken up by the recipient cells and their contents released into the cytoplasm. Let-7-loaded EVs have been suggested to affect cellular pathways and biological targets in the recipient cells, and can modulate viral replication, the host antiviral response, and the action of cancer-related viruses. In the present review, we summarize the available knowledge concerning the expression of let-7 family members, functions, target genes, and mechanistic involvement in viral pathogenesis and host defense. This may provide insight into the development of new therapeutic strategies to manage viral infections.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028 South Africa
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women’s Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
10
|
Rodríguez-Sanabria JS, Escutia-Gutiérrez R, Rosas-Campos R, Armendáriz-Borunda JS, Sandoval-Rodríguez A. An Update in Epigenetics in Metabolic-Associated Fatty Liver Disease. Front Med (Lausanne) 2022; 8:770504. [PMID: 35087844 PMCID: PMC8787199 DOI: 10.3389/fmed.2021.770504] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is characterized by hepatic steatosis accompanied by one of three features: overweight or obesity, T2DM, or lean or normal weight with evidence of metabolic dysregulation. It is distinguished by excessive fat accumulation in hepatocytes, and a decrease in the liver's ability to oxidize fats, the accumulation of ectopic fat, and the activation of proinflammatory pathways. Chronic damage will keep this pathophysiologic cycle active causing progression from hepatic steatosis to cirrhosis and eventually, hepatocarcinoma. Epigenetics affecting gene expression without altering DNA sequence allows us to study MAFLD pathophysiology from a different perspective, in which DNA methylation processes, histone modifications, and miRNAs expression have been closely associated with MAFLD progression. However, these considerations also faced us with the circumstance that modifying those epigenetics patterns might lead to MAFLD regression. Currently, epigenetics is an area of great interest because it could provide new insights in therapeutic targets and non-invasive biomarkers. This review comprises an update on the role of epigenetic patterns, as well as innovative therapeutic targets and biomarkers in MAFLD.
Collapse
Affiliation(s)
- J Samael Rodríguez-Sanabria
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico
| | - Rebeca Escutia-Gutiérrez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico
| | - Rebeca Rosas-Campos
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico
| | - Juan S Armendáriz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico.,School of Medicine and Health Sciences, Tecnologico de Monterrey, Campus Guadalajara, Zapopan, Mexico
| | - Ana Sandoval-Rodríguez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico
| |
Collapse
|
11
|
Turning Data to Knowledge: Online Tools, Databases, and Resources in microRNA Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1385:133-160. [DOI: 10.1007/978-3-031-08356-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Quillet A, Anouar Y, Lecroq T, Dubessy C. Prediction methods for microRNA targets in bilaterian animals: Toward a better understanding by biologists. Comput Struct Biotechnol J 2021; 19:5811-5825. [PMID: 34765096 PMCID: PMC8567327 DOI: 10.1016/j.csbj.2021.10.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/20/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the posttranscriptional level. Because of their wide network of interactions, miRNAs have become the focus of many studies over the past decade, particularly in animal species. To streamline the number of potential wet lab experiments, the use of miRNA target prediction tools is currently the first step undertaken. However, the predictions made may vary considerably depending on the tool used, which is mostly due to the complex and still not fully understood mechanism of action of miRNAs. The discrepancies complicate the choice of the tool for miRNA target prediction. To provide a comprehensive view of this issue, we highlight in this review the main characteristics of miRNA-target interactions in bilaterian animals, describe the prediction models currently used, and provide some insights for the evaluation of predictor performance.
Collapse
Affiliation(s)
- Aurélien Quillet
- Normandie Université, UNIROUEN, INSERM, Laboratoire Différenciation et Communication Neuronale et Neuroendocrine, 76000 Rouen, France
| | - Youssef Anouar
- Normandie Université, UNIROUEN, INSERM, Laboratoire Différenciation et Communication Neuronale et Neuroendocrine, 76000 Rouen, France
| | - Thierry Lecroq
- Normandie Université, UNIROUEN, UNIHAVRE, INSA Rouen, Laboratoire d'Informatique du Traitement de l'Information et des Systèmes, 76000 Rouen, France
| | - Christophe Dubessy
- Normandie Université, UNIROUEN, INSERM, Laboratoire Différenciation et Communication Neuronale et Neuroendocrine, 76000 Rouen, France.,Normandie Université, UNIROUEN, INSERM, PRIMACEN, 76000 Rouen, France
| |
Collapse
|
13
|
Khatun MS, Alam MA, Shoombuatong W, Mollah MNH, Kurata H, Hasan MM. Recent development of bioinformatics tools for microRNA target prediction. Curr Med Chem 2021; 29:865-880. [PMID: 34348604 DOI: 10.2174/0929867328666210804090224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are central players that regulate the post-transcriptional processes of gene expression. Binding of miRNAs to target mRNAs can repress their translation by inducing the degradation or by inhibiting the translation of the target mRNAs. High-throughput experimental approaches for miRNA target identification are costly and time-consuming, depending on various factors. It is vitally important to develop the bioinformatics methods for accurately predicting miRNA targets. With the increase of RNA sequences in the post-genomic era, bioinformatics methods are being developed for miRNA studies specially for miRNA target prediction. This review summarizes the current development of state-of-the-art bioinformatics tools for miRNA target prediction, points out the progress and limitations of the available miRNA databases, and their working principles. Finally, we discuss the caveat and perspectives of the next-generation algorithms for the prediction of miRNA targets.
Collapse
Affiliation(s)
- Mst Shamima Khatun
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502. Japan
| | - Md Ashad Alam
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112. United States
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700. Thailand
| | - Md Nurul Haque Mollah
- Laboratory of Bioinformatics, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh. 5Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083. Japan
| | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502. Japan
| | - Md Mehedi Hasan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502. Japan
| |
Collapse
|
14
|
Satyam R, Bhardwaj T, Goel S, Jha NK, Jha SK, Nand P, Ruokolainen J, Kamal MA, Kesari KK. miRNAs in SARS-CoV 2: A Spoke in the Wheel of Pathogenesis. Curr Pharm Des 2021; 27:1628-1641. [PMID: 33023438 DOI: 10.2174/1381612826999201001200529] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The rapid emergence of Severe Acute Respiratory Syndrome coronavirus 2 (SARS-- CoV-2) has resulted in an increased mortality rate across the globe. However, the underlying mechanism of SARS-CoV-2 altering human immune response is still elusive. The existing literature on miRNA mediated pathogenesis of RNA virus viz. Dengue virus, West Nile virus, etc. raises a suspicion that miRNA encoded by SARS-CoV-2 might facilitate virus replication and regulate the host's gene expression at the post-transcriptional level. METHODS We investigated this possibility via computational prediction of putative miRNAs encoded by the SARS-CoV-2 genome using a novel systematic pipeline that predicts putative mature-miRNA and their targeted genes transcripts. To trace down if viral-miRNAs targeted the genes critical to the immune pathway, we assessed whether mature miRNA transcripts exhibit effective hybridization with the 3'UTR region of human gene transcripts. Conversely, we also tried to study human miRNA-mediated viral gene regulation to get insight into the miRNA mediated offense and defense mechanism of virus and its host organisms in toto. RESULTS Our analysis led us to shortlist six putative miRNAs that target, majorly, genes related to cell proliferation/ differentiation/signaling, and senescence. Nonetheless, they also target immune-related genes that directly/ indirectly orchestrate immune pathways like TNF (Tumor Necrosis Factor) signaling and Chemokine signaling pathways putatively serving as the nucleus to cytokine storms. CONCLUSION Besides, these six miRNAs were found to be conserved so far across 80 complete genomes of SARS-CoV-2 (NCBI Virus, last assessed 12 April 2020) including Indian strains that are also targeted by 7 human miRNAs and can, therefore, be exploited to develop MicroRNA-Attenuated Vaccines.
Collapse
Affiliation(s)
- Rohit Satyam
- Department of Biotechnology, Noida Institute of Engineering and Technology (NIET), Greater Noida, India
| | - Tulika Bhardwaj
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Sachin Goel
- Department of Biotechnology, Noida Institute of Engineering and Technology (NIET), Greater Noida, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| | - Parma Nand
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| | | | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | | |
Collapse
|
15
|
Lu H, Wang H, Sun P, Wang J, Li S, Xu T. MiR-522-3p inhibits proliferation and activation by regulating the expression of SLC31A1 in T cells. Cytotechnology 2021; 73:483-496. [PMID: 34149179 PMCID: PMC8167029 DOI: 10.1007/s10616-021-00472-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/22/2021] [Indexed: 11/25/2022] Open
Abstract
We investigated the role of miR-522-3p in thymoma-associated myasthenia gravis (TAMG), and the mechanism of action in T cells. The miR-522-3p expression in normal serum, non-thymoma MG patient serum and TAMG patient serum and tissues was detected by quantitative real-time PCR (qRT-PCR), respectively. We assessed miR-522-3p expression in Jurkat cells and human CD4+ T cells after activation by anti-CD3 and anti-CD28 using qRT-PCR. The viability, proliferation, cycle distribution and the levels of CD25, CD69, interleukin-2 (IL-2) and IL-10 in transfected Jurkat cells were detected by Cell counting kit-8, 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, qRT-PCR, respectively. Targeting relationships of miR-522-3p and SLC31A1 were predicted and validated by bioinformatics analysis and dual-luciferase reporter. The viability, proliferation, cycle distribution and the levels of SLC31A1, CD25, CD69, IL-2 and IL-10 in transfected Jurkat cells were detected by above methods and western blot. The miR-522-3p expression was declined in TAMG and activated T cells. MiR-522-3p inhibitor promoted cell viability, EdU positive cells, cycle progression, and the level of CD25, CD69, IL-2 and IL-10 in Jurkat cells, while the effect of miR-522-3p mimic was the opposite. SLC31A1 was targeted by miR-522-3p, and miR-522-3p inhibited SLC31A1 expression. Overexpressed SLC31A1 reversed the inhibitory effects of miR-522-3p mimic on cell viability, EdU positive cell, cycle progression, and the levels of IL-2 and IL-10 in transfected Jurkat cells. MiR-522-3p expression was down-regulated in TAMG, and miR-522-3p inhibited proliferation and activation by regulating SLC31A1 expression in T cells.
Collapse
Affiliation(s)
- Hengxiao Lu
- Department of Thoracic Surgery, Weifang People’s Hospital, No.151 Guangwen Road, Kuiwen District, Weifang City, 261041 Shangdong Province China
| | - Hao Wang
- Department of Thoracic Surgery, Weifang People’s Hospital, No.151 Guangwen Road, Kuiwen District, Weifang City, 261041 Shangdong Province China
| | - Peidao Sun
- Department of Thoracic Surgery, Changle People’s Hospital, Weifang, China
| | - Jiang Wang
- Department of Thoracic Surgery, Weifang People’s Hospital, No.151 Guangwen Road, Kuiwen District, Weifang City, 261041 Shangdong Province China
| | - Shuhai Li
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Jinan, China
| | - Tongzhen Xu
- Department of Thoracic Surgery, Weifang People’s Hospital, No.151 Guangwen Road, Kuiwen District, Weifang City, 261041 Shangdong Province China
| |
Collapse
|
16
|
Finotti A, Gasparello J, Casnati A, Corradini R, Gambari R, Sansone F. Delivery of Peptide Nucleic Acids Using an Argininocalix[4]arene as Vector. Methods Mol Biol 2021; 2211:123-143. [PMID: 33336275 DOI: 10.1007/978-1-0716-0943-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The importance of peptide nucleic acids (PNAs) for alteration of gene expression is nowadays firmly established. PNAs are characterized by a pseudo-peptide backbone composed of N-(2-aminoethyl)glycine units and have been found to be excellent candidates for antisense and antigene therapies. Recently, PNAs have been demonstrated to alter the action of microRNAs and thus can be considered very important tools for miRNA therapeutics. In fact, the pharmacological modulation of microRNA activity appears to be a very interesting approach in the development of new types of drugs. Among the limits of PNAs in applied molecular biology, the delivery to target cells and tissues is of key importance. The aim of this chapter is to describe methods for the efficient delivery of unmodified PNAs designed to target microRNAs involved in cancer, using as model system miR-221-3p and human glioma cells as in vitro experimental cellular system. The methods employed to deliver PNAs targeting miR-221-3p here presented are based on a macrocyclic multivalent tetraargininocalix[4]arene used as non-covalent vector for anti-miR-221-3p PNAs. High delivery efficiency, low cytotoxicity, maintenance of the PNA biological activity, and easy preparation makes this vector a candidate for a universal delivery system for this class of nucleic acid analogs.
Collapse
Affiliation(s)
- Alessia Finotti
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy.
| | - Jessica Gasparello
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | - Alessandro Casnati
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parma University, Parma, Italy
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parma University, Parma, Italy
| | - Roberto Gambari
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy.,Interuniversity Consortium for Biotechnology, Trieste University, Trieste, Italy
| | - Francesco Sansone
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parma University, Parma, Italy.
| |
Collapse
|
17
|
Li N, Shan N, Lu L, Wang Z. tRFtarget: a database for transfer RNA-derived fragment targets. Nucleic Acids Res 2021; 49:D254-D260. [PMID: 33035346 PMCID: PMC7779015 DOI: 10.1093/nar/gkaa831] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/10/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
Transfer RNA-derived fragments (tRFs) are a new class of small non-coding RNAs and play important roles in biological and physiological processes. Prediction of tRF target genes and binding sites is crucial in understanding the biological functions of tRFs in the molecular mechanisms of human diseases. We developed a publicly accessible web-based database, tRFtarget (http://trftarget.net), for tRF target prediction. It contains the computationally predicted interactions between tRFs and mRNA transcripts using the two state-of-the-art prediction tools RNAhybrid and IntaRNA, including location of the binding sites on the target, the binding region, and free energy of the binding stability with graphic illustration. tRFtarget covers 936 tRFs and 135 thousand predicted targets in eight species. It allows researchers to search either target genes by tRF IDs or tRFs by gene symbols/transcript names. We also integrated the manually curated experimental evidence of the predicted interactions into the database. Furthermore, we provided a convenient link to the DAVID® web server to perform downstream functional pathway analysis and gene ontology annotation on the predicted target genes. This database provides useful information for the scientific community to experimentally validate tRF target genes and facilitate the investigation of the molecular functions and mechanisms of tRFs.
Collapse
Affiliation(s)
- Ningshan Li
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520, USA
| | - Nayang Shan
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520, USA.,Center for Statistical Science, Department of Industrial Engineering, Tsinghua University, Beijing 100084, China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06520, USA
| | - Zuoheng Wang
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
18
|
Abstract
The involvement of microRNAs in human pathologies is firmly established. Accordingly, the pharmacological modulation of microRNA activity appears to be a very interesting approach in the development of new types of drugs (miRNA therapeutics). One important research area is the possible development of miRNA therapeutics in the field of rare diseases. In this respect, appealing molecules are based on peptide nucleic acids (PNAs), displaying, in their first description, a pseudo-peptide backbone composed of N-(2-aminoethyl)glycine units, and found to be excellent candidates for antisense and antigene therapies. The aim of the present article is to describe methods for determining the activity of PNAs designed to target microRNAs involved in cystic fibrosis, using as model system miR-145-5p and its target cystic fibrosis transmembrane conductance regulator (CFTR) mRNA. The methods employed to study the effects of PNAs targeting miR-145-5p are presented here by discussing data obtained using as cellular model system the human lung epithelial Calu-3 cell line.
Collapse
|
19
|
Muley VY. Mathematical Linear Programming to Model MicroRNAs-Mediated Gene Regulation Using Gurobi Optimizer. Methods Mol Biol 2021; 2328:287-301. [PMID: 34251634 DOI: 10.1007/978-1-0716-1534-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Genes are transcribed into various RNA molecules, and a portion of them called messenger RNA (mRNA) is then translated into proteins in the process known as gene expression. Gene expression is a high-energy demanding process, and aberrant expression changes often manifest into pathophysiology. Therefore, gene expression is tightly regulated by several factors at different levels. MicroRNAs (miRNAs) are one of the powerful post-transcriptional regulators involved in key biological processes and diseases. They inhibit the translation of their mRNA targets or degrade them in a sequence-specific manner, and hence control the rate of protein synthesis. In recent years, in response to experimental limitations, several computational methods have been proposed to predict miRNA target genes based on sequence complementarity and structural features. However, these predictions yield a large number of false positives. Integration of gene and miRNA expression data drastically alleviates this problem. Here, I describe a mathematical linear modeling approach to identify miRNA targets at the genome scale using gene and miRNA expression data. Mathematical modeling is faster and more scalable to genome-level compared to conventional statistical modeling approaches.
Collapse
|
20
|
Integrated miRNA/mRNA Counter-Expression Analysis Highlights Oxidative Stress-Related Genes CCR7 and FOXO1 as Blood Markers of Coronary Arterial Disease. Int J Mol Sci 2020; 21:ijms21061943. [PMID: 32178422 PMCID: PMC7139611 DOI: 10.3390/ijms21061943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/10/2020] [Indexed: 11/23/2022] Open
Abstract
Our interest in the mechanisms of atherosclerosis progression (ATHp) has led to the recent identification of 13 miRNAs and 1285 mRNAs whose expression was altered during ATHp. Here, we deepen the functional relationship among these 13 miRNAs and genes associated to oxidative stress, a crucial step in the onset and progression of vascular disease. We first compiled a list of genes associated to the response to oxidative stress (Oxstress genes) by performing a reverse Gene Ontology analysis (rGO, from the GO terms to the genes) with the GO terms GO0006979, GO1902882, GO1902883 and GO1902884, which included a total of 417 unique Oxstress genes. Next, we identified 108 putative targets of the 13 miRNAs among these unique Oxstress genes, which were validated by an integrated miRNA/mRNA counter-expression analysis with the 1285 mRNAs that yielded 14 genes, Map2k1, Mapk1, Mapk9, Dapk1, Atp2a2, Gata4, Fos, Egfr, Foxo1, Ccr7, Vkorc1l1, Rnf7, Kcnh3, and Mgat3. GO enrichment analysis and a protein–protein-interaction network analysis (PPI) identified most of the validated Oxstress transcripts as components of signaling pathways, highlighting a role for MAP signaling in ATHp. Lastly, expression of these Oxstress transcripts was measured in PBMCs from patients suffering severe coronary artery disease, a serious consequence of ATHp. This allowed the identification of FOXO1 and CCR7 as blood markers downregulated in CAD. These results are discussed in the context of the interaction of the Oxstress transcripts with the ATHp-associated miRNAs.
Collapse
|
21
|
Navarro E, Mallén A, Cruzado JM, Torras J, Hueso M. Unveiling ncRNA regulatory axes in atherosclerosis progression. Clin Transl Med 2020; 9:5. [PMID: 32009226 PMCID: PMC6995802 DOI: 10.1186/s40169-020-0256-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023] Open
Abstract
Completion of the human genome sequencing project highlighted the richness of the cellular RNA world, and opened the door to the discovery of a plethora of short and long non-coding RNAs (the dark transcriptome) with regulatory or structural potential, which shifted the balance of pathological gene alterations from coding to non-coding RNAs. Thus, disease risk assessment currently has to also evaluate the expression of new RNAs such as small micro RNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), competing endogenous RNAs (ceRNAs), retrogressed elements, 3'UTRs of mRNAs, etc. We are interested in the pathogenic mechanisms of atherosclerosis (ATH) progression in patients suffering Chronic Kidney Disease, and in this review, we will focus in the role of the dark transcriptome (non-coding RNAs) in ATH progression. We will focus in miRNAs and in the formation of regulatory axes or networks with their mRNA targets and with the lncRNAs that function as miRNA sponges or competitive inhibitors of miRNA activity. In this sense, we will pay special attention to retrogressed genomic elements, such as processed pseudogenes and Alu repeated elements, that have been recently seen to also function as miRNA sponges, as well as to the use or miRNA derivatives in gene silencing, anti-ATH therapies. Along the review, we will discuss technical developments associated to research in lncRNAs, from sequencing technologies to databases, repositories and algorithms to predict miRNA targets, as well as new approaches to miRNA function, such as integrative or enrichment analysis and their potential to unveil RNA regulatory networks.
Collapse
Affiliation(s)
- Estanislao Navarro
- Independent Researcher, Barcelona, Spain. .,Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
| | - Adrian Mallén
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Josep M Cruzado
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Joan Torras
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Miguel Hueso
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
| |
Collapse
|
22
|
Gasparello J, Papi C, Zurlo M, Corradini R, Gambari R, Finotti A. Demonstrating specificity of bioactive peptide nucleic acids (PNAs) targeting microRNAs for practical laboratory classes of applied biochemistry and pharmacology. PLoS One 2019; 14:e0221923. [PMID: 31509554 PMCID: PMC6738603 DOI: 10.1371/journal.pone.0221923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/19/2019] [Indexed: 12/26/2022] Open
Abstract
Practical laboratory classes teaching molecular pharmacology approaches employed in the development of therapeutic strategies are of great interest for students of courses in Biotechnology, Applied Biology, Pharmaceutic and Technology Chemistry, Translational Oncology. Unfortunately, in most cases the technology to be transferred to learning students is complex and requires multi-step approaches. In this respect, simple and straightforward experimental protocols might be of great interest. This study was aimed at presenting a laboratory exercise focusing (a) on a very challenging therapeutic strategy, i.e. microRNA therapeutics, and (b) on the employment of biomolecules of great interest in applied biology and pharmacology, i.e. peptide nucleic acids (PNAs). The aims of the practical laboratory were to determine: (a) the possible PNA-mediated arrest in RT-qPCR, to be eventually used to demonstrate PNA targeting of selected miRNAs; (b) the possible lack of activity on mutated PNA sequences; (c) the effects (if any) on the amplification of other unrelated miRNA sequences. The results which can be obtained support the following conclusions: PNA-mediated arrest in RT-qPCR can be analyzed in a easy way; mutated PNA sequences are completely inactive; the effects of the employed PNAs are specific and no inhibitory effect occurs on other unrelated miRNA sequences. This activity is simple (cell culture, RNA extraction, RT-qPCR are all well-established technologies), fast (starting from isolated and characterized RNA, few hours are just necessary), highly reproducible (therefore easily employed by even untrained students). On the other hand, these laboratory lessons require some facilities, the most critical being the availability of instruments for PCR. While this might be a problem in the case these instruments are not available, we would like to underline that determination of the presence or of a lack of amplified product can be also obtained using standard analytical approaches based on agarose gel electrophoresis.
Collapse
Affiliation(s)
- Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Chiara Papi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Matteo Zurlo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- Interuniversity Consortium for Biotechnology (CIB), Trieste, Italy
- * E-mail:
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|