1
|
Zhang H, Du Y, Tang W, Chen M, Yu W, Ke Z, Dong S, Cheng Q. Eldecalcitol prevents muscle loss and osteoporosis in disuse muscle atrophy via NF-κB signaling in mice. Skelet Muscle 2023; 13:22. [PMID: 38115079 PMCID: PMC10729577 DOI: 10.1186/s13395-023-00332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
We investigated the effect of eldecalcitol on disuse muscle atrophy. C57BL/6J male mice aged 6 weeks were randomly assigned to control, tail suspension (TS), and TS-eldecalcitol-treated groups and were injected intraperitoneally twice a week with either vehicle (control and TS) or eldecalcitol at 3.5 or 5 ng for 3 weeks. Grip strength and muscle weights of the gastrocnemius (GAS), tibialis anterior (TA), and soleus (SOL) were determined. Oxidative stress was evaluated by malondialdehyde, superoxide dismutase, glutathione peroxidase, and catalase. Bone microarchitecture was analyzed using microcomputed tomography. The effect of eldecalcitol on C2C12 myoblasts was analyzed by measuring myofibrillar protein MHC and the atrophy markers Atrogin-1 and MuRF-1 using immunofluorescence. The influence of eldecalcitol on NF-κB signaling pathway and vitamin D receptor (VDR) was assessed through immunofluorescence, (co)-immunoprecipitation, and VDR knockdown studies. Eldecalcitol increased grip strength (P < 0.01) and restored muscle loss in GAS, TA, and SOL (P < 0.05 to P < 0.001) induced by TS. An improvement was noted in bone mineral density and bone architecture in the eldecalcitol group. The impaired oxidative defense system was restored by eldecalcitol (P < 0.05 to P < 0.01 vs. TS). Eldecalcitol (10 nM) significantly inhibited the expression of MuRF-1 (P < 0.001) and Atrogin-1 (P < 0.01), increased the diameter of myotubes (P < 0.05), inhibited the expression of P65 and P52 components of NF-κB and P65 nuclear location, thereby inhibiting NF-κB signaling. Eldecalcitol promoted VDR binding to P65 and P52. VDR signaling is required for eldecalcitol-mediated anti-atrophy effects. In conclusion, eldecalcitol exerted its beneficial effects on disuse-induced muscle atrophy via NF-κB inhibition.
Collapse
Affiliation(s)
- Haichao Zhang
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, 200040, People's Republic of China
| | - Yanping Du
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, 200040, People's Republic of China
| | - Wenjing Tang
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, 200040, People's Republic of China
| | - Minmin Chen
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, 200040, People's Republic of China
| | - Weijia Yu
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, 200040, People's Republic of China
| | - Zheng Ke
- Medical Division, Chugai Pharma China Co., Ltd., Shanghai, 200021, People's Republic of China
| | - Shuangshuang Dong
- Medical Division, Chugai Pharma China Co., Ltd., Shanghai, 200021, People's Republic of China
| | - Qun Cheng
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
2
|
Li J, Xue C, Yang H, Zhang J, Li G, Li J, Kuang F, Chen J, Zhang S, Gao F, Kou Z, Zhang X, Dong L. Simulated weightlessness induces hippocampal insulin resistance and cognitive impairment. Life Sci 2023; 333:122112. [PMID: 37758017 DOI: 10.1016/j.lfs.2023.122112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
Growing evidence highlights the potential consequences of long-term spaceflight, including gray matter volume reduction and cognitive dysfunction with subclinical manifestations of diabetes mellitus among astronauts, but the underlying mechanisms remain unknown. In this study, we found that long-term simulated weightlessness induced hippocampal insulin resistance and subsequent neuronal damage and cognitive impairment in rats. Rats subjected to 4-week tail suspension exhibited peripheral insulin resistance, evidenced by increased fasting blood glucose and abnormal glucose tolerance and insulin tolerance, alongside reduced spontaneous activity and impaired recognition memory. In addition, 4 weeks of simulated weightlessness induced neuronal apoptosis and degeneration in the hippocampus, as evidenced by increased TUNEL and Fluoro-Jade B staining-positive neurons. Mechanistically, insulin-stimulated hippocampal Akt phosphorylation was decreased, while PTEN, the negative regulator of insulin signaling, was increased in the hippocampus in tail-suspended rats. Interestingly, treatment with berberine, an insulin sensitizer, partly reversed the above-mentioned effects induced by simulated weightlessness. These data suggest that long-term simulated weightlessness induces cognitive impairment as well as neuronal apoptosis and neural degeneration, partially through hippocampal insulin resistance via PTEN up-regulation. Berberine treatment attenuates hippocampal insulin resistance and improves cognitive function.
Collapse
Affiliation(s)
- Jiahui Li
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China; Department of Psychology, Air Force Hospital, Western Theater Command, Chengdu, China
| | - Caiyan Xue
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Hongyan Yang
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Jiaxin Zhang
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Guohua Li
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Jijun Li
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Fang Kuang
- Department of Neurobiology, Air Force Medical University, Xi'an, China
| | - Jing Chen
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Air Force Medical University, Xi'an, China
| | - Shu Zhang
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Feng Gao
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Zhenzhen Kou
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Air Force Medical University, Xi'an, China.
| | - Xing Zhang
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China.
| | - Ling Dong
- Key Laboratory of Aerospace Medicine of the Ministry of Education, School of Aerospace Medicine, Air Force Medical University, Xi'an, China.
| |
Collapse
|
3
|
Vilchinskaya N, Lim WF, Belova S, Roberts TC, Wood MJA, Lomonosova Y. Investigating Eukaryotic Elongation Factor 2 Kinase/Eukaryotic Translation Elongation Factor 2 Pathway Regulation and Its Role in Protein Synthesis Impairment during Disuse-Induced Skeletal Muscle Atrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2023:S0002-9440(23)00060-3. [PMID: 36871751 DOI: 10.1016/j.ajpath.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/16/2023] [Accepted: 02/10/2023] [Indexed: 03/07/2023]
Abstract
The principal mechanism underlying the reduced rate of protein synthesis in atrophied skeletal muscle is largely unknown. Eukaryotic elongation factor 2 kinase (eEF2k) impairs the ability of eukaryotic translation elongation factor 2 (eEF2) to bind to the ribosome via T56 phosphorylation. Perturbations in the eEF2k/eEF2 pathway during various stages of disuse muscle atrophy have been investigated utilizing a rat hind limb suspension (HS) model. Two distinct components of eEF2k/eEF2 pathway misregulation were demonstrated, observing a significant (P < 0.01) increase in eEF2k mRNA expression as early as 1-day HS and in eEF2k protein level after 3-day HS. We set out to determine whether eEF2k activation is a Ca2+-dependent process with involvement of Cav1.1. The ratio of T56-phosphorylated/total eEF2 was robustly elevated after 3-day HS, which was completely reversed by BAPTA-AM and decreased by 1.7-fold (P < 0.05) by nifedipine. Transfection of C2C12 with pCMV-eEF2k and administration with small molecules were used to modulate eEF2k and eEF2 activity. More important, pharmacologic enhancement of eEF2 phosphorylation induced phosphorylated ribosomal protein S6 kinase (T389) up-regulation and restoration of global protein synthesis in the HS rats. Taken together, the eEF2k/eEF2 pathway is up-regulated during disuse muscle atrophy involving calcium-dependent activation of eEF2k partly via Cav1.1. The study provides evidence, in vitro and in vivo, of the eEF2k/eEF2 pathway impact on ribosomal protein S6 kinase activity as well as protein expression of key atrophy biomarkers, muscle atrophy F-box/atrogin-1 and muscle RING finger-1.
Collapse
Affiliation(s)
| | - Wooi Fang Lim
- Department of Paediatrics, University of Oxford Children's Hospital, John Radcliffe Hospital, Oxford, United Kingdom; Institute of Developmental and Regenerative Medicine, Oxford, United Kingdom; MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom
| | | | - Thomas C Roberts
- Department of Paediatrics, University of Oxford Children's Hospital, John Radcliffe Hospital, Oxford, United Kingdom; Institute of Developmental and Regenerative Medicine, Oxford, United Kingdom; MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom
| | - Matthew J A Wood
- Department of Paediatrics, University of Oxford Children's Hospital, John Radcliffe Hospital, Oxford, United Kingdom; Institute of Developmental and Regenerative Medicine, Oxford, United Kingdom; MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom
| | - Yulia Lomonosova
- Department of Paediatrics, University of Oxford Children's Hospital, John Radcliffe Hospital, Oxford, United Kingdom; Institute of Developmental and Regenerative Medicine, Oxford, United Kingdom; MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
4
|
Yuan L, Zhang R, Li X, Gao C, Hu X, Hussain S, Zhang L, Wang M, Ma X, Pan Q, Lou X, Si S. Long-term simulated microgravity alters gut microbiota and metabolome in mice. Front Microbiol 2023; 14:1100747. [PMID: 37032862 PMCID: PMC10080065 DOI: 10.3389/fmicb.2023.1100747] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Spaceflight and microgravity has a significant impact on the immune, central nervous, bone, and muscle support and cardiovascular systems. However, limited studies are available on the adverse effects of long-term microgravity on the intestinal microbiota, metabolism, and its relationships. In this study, a ground-based simulated microgravity (SMG) mouse model was established to evaluate the impact of long-term microgravity on gut microbiota and metabolome. After 8 weeks of SMG, alterations of the intestinal microbiota and metabolites were detected using 16S rRNA sequencing and untargeted metabolomics. Compared to the control, no significant differences in α-diversity were observed at weeks 2, 4 and 8. Nevertheless, there were clear differences in community structures at different time points. The phylum Verrucomicrobia significantly declined from 2 to 8 weeks of SMG, yet the relative abundance of Actinobacteria and Deferribacteres expanded remarkably at weeks 8. SMG decreased the genus of Allobaculum and increased Bacteroides significantly throughout the period of 8 weeks. Besides, Genus Akkermansia, Gracilibacter, Prevotella, Odoribacter, Rothia, Sporosarcina, Gracilibacter, Clostridium, and Mucispirillum were identified as biomarkers for SMG group. Desulfovibrio_c21_c20, Akkermansia_muciniphila, and Ruminococcus_gnavus dropped at week 2, which tend to recover at week 4, except for Akkermansia_muciniphila. Bacteroides_uniformis and Faecalibacterium_prausnitzii declined significantly, while Ruminococcus_flavefaciens and Mucispirillum_schaedleri elevated at week 8. Furthermore, intestinal metabolome analysis showed that 129 were upregulated and 146 metabolites were downregulated in SMG. Long-term SMG most affected steroid hormone biosynthesis, tryptophan, cysteine, methionine, arginine, proline metabolism, and histidine metabolism. Correlated analysis suggested that the potential beneficial taxa Allobaculum, Akkermansia, and Faecalibacterium were negatively associated with tryptophan, histidine, arginine, and proline metabolism, but positively with steroid hormone biosynthesis. Yet Bacteroides, Lachnospiraceae_Clostridium, Rothia, Bilophila, and Coprococcus were positively correlated with arginine, proline, tryptophan, and histidine metabolism, while negatively associated with steroid hormone biosynthesis. These results suggest that Long-term SMG altered the community of intestinal microbiota, and then further disturbed intestinal metabolites and metabolic pathways, which have great potential to help understand and provide clues for revealing the mechanisms of long-term SMG involved diseases.
Collapse
Affiliation(s)
- Lu Yuan
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
| | - Rong Zhang
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
| | - Xinlou Li
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
| | - Caiyun Gao
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
| | - Xiangnan Hu
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
| | - Safdar Hussain
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Linlin Zhang
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
| | - Moye Wang
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
| | - Xiaoyu Ma
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
| | - Qiuxia Pan
- Department of Traditional Chinese Medicine, PLA Strategic Support Force Medical Center, Beijing, China
| | - Xiaotong Lou
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
- *Correspondence: Xiaotong Lou,
| | - Shaoyan Si
- Department of Medical Research, PLA Strategic Support Force Medical Center, Beijing, China
- Shaoyan Si,
| |
Collapse
|
5
|
Vilchinskaya N, Altaeva E, Lomonosova Y. Gaining insight into the role of FoxO1 in the progression of disuse-induced skeletal muscle atrophy. Adv Biol Regul 2022; 85:100903. [PMID: 35947892 DOI: 10.1016/j.jbior.2022.100903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Expression of FoxO transcription factors increases during certain forms of atrophy. In a dephosphorylated state, FoxOs participate in ubiquitin-mediated proteasomal degradation through the transcriptional activation of E3-ubiquitin ligases such as MAFbx/atrogin-1 and MuRF1. There is exhaustive research demonstrating that FoxO3a is sufficient to induce MAFbx/atrogin-1 and MuRF-1 expressions. In contrast, the data are conflicting on the requirement of FoxO1 signaling in the activation of the E3-ubiquitin ligases. Moreover, no reports currently exist on the particular role of FoxO1 in the molecular mechanisms involved in the progression of physiological muscle wasting. Here, we have applied the most extensively used rodent model of microgravity/functional unloading to stimulate disuse-induced skeletal muscle atrophy such as rat hindlimb suspension (HS). We showed that inhibition of FoxO1 activity by a selective inhibitor AS1842856 completely reversed an increase in expression of MuRF-1, but not MAFbx/atrogin-1, observed upon HS. Furthermore, we demonstrated that FoxO1 induced upregulation of another E3-ubiquitin-ligase of a MuRF protein family MuRF-2 in skeletal muscle subjected to disuse. Prevention of the MuRF increase upon HS impeded upregulation of transcript expression of a negative regulator of NFATc1 pathway calsarcin-2, which was associated with a partial reversion of MyHC-IId/x and MyHC-IIb mRNA expressions. Importantly, FoxO1 inhibition induced a marked increase in p70S6k phosphorylation, an important stage in the initiation of protein translation, concomitant with the restoration of global protein synthesis in the skeletal muscle of the HS rats. Examination of eIF3f expression and the eEF2k/eEF2 pathway, other factors controlling translation initiation and elongation respectively, did not reveal any impact of FoxO1 on their activity. Lastly, we observed a decrease in transcript levels of Sesn3, but not Sesn1 and Sesn2, upon disuse, which was completely reversed by FoxO1 inhibition. These data demonstrate that FoxO1 signaling contributes to the development of disuse-induced skeletal muscle atrophy, including slow to fast MyHC isoform shift, mostly through upregulation of MuRF-1 and MuRF-2 expression. Furthermore, FoxO1 inhibition is required to recover Sesn3 mRNA expression in atrophic conditions, which likely contributes to the enhanced p70S6k activity and restoration of the protein synthesis rate.
Collapse
Affiliation(s)
- Natalia Vilchinskaya
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 76a, Khoroshevskoe Shosse, Moscow, 123007, Russia.
| | - Erzhena Altaeva
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 76a, Khoroshevskoe Shosse, Moscow, 123007, Russia.
| | - Yulia Lomonosova
- Department of Paediatrics, University of Oxford, Children's Hospital, John Radcliffe, Oxford, OX3 9DU, UK; Institute of Developmental and Regenerative Medicine, Roosevelt Dr, IMS-Tetsuya Nakamura Building, Oxford, OX3 7TY, UK; MDUK Oxford Neuromuscular Centre, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| |
Collapse
|
6
|
Kim J, Park J, Mikami T. Regular Low-Intensity Exercise Prevents Cognitive Decline and a Depressive-Like State Induced by Physical Inactivity in Mice: A New Physical Inactivity Experiment Model. Front Behav Neurosci 2022; 16:866405. [PMID: 35600989 PMCID: PMC9121131 DOI: 10.3389/fnbeh.2022.866405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/29/2022] [Indexed: 12/26/2022] Open
Abstract
Regular exercise has already been established as a vital strategy for maintaining physical health via experimental results in humans and animals. In addition, numerous human studies have reported that physical inactivity is a primary factor that causes obesity, muscle atrophy, metabolic diseases, and deterioration in cognitive function and mental health. Regardless, an established animal experimental method to examine the effect of physical inactivity on physiological, biochemical, and neuroscientific parameters is yet to be reported. In this study, we made a new housing cage, named as the physical inactivity (PI) cage, to investigate the effect of physical inactivity on cognitive function and depressive-like states in mice and obtained the following experimental results by its use. We first compared the daily physical activity of mice housed in the PI and standard cages using the nano-tag method. The mice’s physical activity levels in the PI cage decreased to approximately half of that in the mice housed in the standard cage. Second, we examined whether housing in the PI cage affected plasma corticosterone concentration. The plasma corticosterone concentration did not alter before, 1 week, or 10 weeks after housing. Third, we investigated whether housing in the PI cage for 10 weeks affected cognitive function and depressive behavior. Housing in an inactive state caused a cognitive decline and depressive state in the mice without increasing body weight and plasma corticosterone. Finally, we examined the effect of regular low-intensity exercise on cognitive function and depressive state in the mice housed in the PI cage. Physical inactivity decreased neuronal cell proliferation, blood vessel density, and gene expressions of vascular endothelial growth factors and brain-derived neurotrophic factors in the hippocampus. In addition, regular low-intensity exercise, 30 min of treadmill running at a 5–15 m/min treadmill speed 3 days per week, prevented cognitive decline and the onset of a depressive-like state caused by physical inactivity. These results showed that our novel physical inactivity model, housing the mice in the PI cage, would be an adequate and valuable experimental method for examining the effect of physical inactivity on cognitive function and a depressive-like state.
Collapse
Affiliation(s)
- Jimmy Kim
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Jonghyuk Park
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Toshio Mikami
- Department of Health and Sports Science, Nippon Medical School, Tokyo, Japan
- *Correspondence: Toshio Mikami,
| |
Collapse
|
7
|
Liu L, Huang K, Li W, Qiu R, Fang Y, Huang Y, Zhao S, Lv H, Zhang K, Shan H, Li Y. Molecular Imaging of Collagen Destruction of the Spine. ACS NANO 2021; 15:19138-19149. [PMID: 34738460 DOI: 10.1021/acsnano.1c07112] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As the leading cause of disability worldwide, low back pain is commonly caused by biomechanical and catabolic disruptions to key structures of the spine, such as intervertebral discs and facet joints. To date, accurate, noninvasive detection of microdestruction within these tissues remains an elusive goal. Here, we report an in vivo imaging approach based on a collagen hybridizing peptide (CHP) that specifically targets disruption to the extracellular matrix architecture at the molecular scale─the denatured collagen molecules. Utilizing fluorescently labeled CHPs, live animal imaging, and light sheet fluorescence microscopy, we mapped collagen destruction in the lumbar spines in 3D, revealing that under normal conditions collagen destruction was localized to load-bearing anatomical structures including annulus fibrosus of the disc and the facet joints, where aging, tensile force (hindlimb suspension), and disc degeneration (needle puncture) escalated the CHP-binding in specific mouse models. We showed that targeting denatured collagen molecules allowed for an accurate, quantifiable interrogation of the structural integrity of these spinal matrixes with a greater sensitivity than anatomical imaging and histology. Finally, we demonstrated CHP's binding to degenerated human discs, suggesting exciting potentials for applying CHP for diagnosing, monitoring, and treating various spinal disorders, including intervertebral disc degeneration, facet joint osteoarthritis, and ankylosing spondylitis.
Collapse
Affiliation(s)
- Lei Liu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Department of Spine Surgery, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Kui Huang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Wei Li
- Department of Pathology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Rongmao Qiu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yijie Fang
- Department of Radiology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yongjie Huang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Suwen Zhao
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Hai Lv
- Department of Spine Surgery, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Kuibo Zhang
- Department of Spine Surgery, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Hong Shan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
- Department of Interventional Medicine, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| |
Collapse
|
8
|
Tanaka S, Madokoro S, Inaoka PT, Yamazaki T. Blood lipid profile changes in type 2 diabetic rats after tail suspension and reloading. Lipids Health Dis 2021; 20:84. [PMID: 34334135 PMCID: PMC8327430 DOI: 10.1186/s12944-021-01511-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/22/2021] [Indexed: 11/10/2022] Open
Abstract
Purpose The effects of the tail suspension and reloading on the protein and lipid metabolism in muscle and blood in type 2 diabetes mellitus (T2DM) are unclear. This study evaluated the hypothesis that skeletal muscle catabolism is greater in T2DM than in non-diabetes mellitus (non-DM) rats and that the activity-dependent changes in the intramuscular lipid accumulation and blood lipid profile are poorer in T2DM than in non-DM rats. Methods T2DM and non-DM rats were suspended for two weeks followed by reloading for two weeks. The muscle and blood were then examined. Results In contrast to our hypothesis, there was no marked difference between the T2DM and non-DM groups in terms of the skeletal muscle catabolism and activity-dependent changes in intramuscular lipid accumulation. However, the blood lipid profile increased in the T2DM group compared to the non-DM group. One interesting finding in this study was the decrease in non-high-density lipoprotein (non-HDL) cholesterol levels after one week of reloading followed by a significant increase in the non-HDL cholesterol levels after two weeks of reloading in the T2DM group. Conclusion These results suggest that a dramatic increase in activity after a period of inactivity may rapidly improve the blood lipid profile in T2DM rats. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01511-y.
Collapse
Affiliation(s)
- Shoji Tanaka
- Department of Rehabilitation, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 920-0942, Japan.
| | - Sachiko Madokoro
- Department of Rehabilitation, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 920-0942, Japan
| | - Pleiades Tiharu Inaoka
- Department of Rehabilitation, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 920-0942, Japan
| | - Toshiaki Yamazaki
- Department of Rehabilitation, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, 920-0942, Japan
| |
Collapse
|
9
|
Marzuca-Nassr GN, Kuwabara WMT, Vitzel KF, Murata GM, Torres RP, Mancini-Filho J, Alba-Loureiro TC, Curi R. Endoplasmic Reticulum Stress and Autophagy Markers in Soleus Muscle Disuse-Induced Atrophy of Rats Treated with Fish Oil. Nutrients 2021; 13:nu13072298. [PMID: 34371808 PMCID: PMC8308346 DOI: 10.3390/nu13072298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
Endoplasmic reticulum stress (ERS) and autophagy pathways are implicated in disuse muscle atrophy. The effects of high eicosapentaenoic (EPA) or high docosahexaenoic (DHA) fish oils on soleus muscle ERS and autophagy markers were investigated in a rat hindlimb suspension (HS) atrophy model. Adult Wistar male rats received daily by gavage supplementation (0.3 mL per 100 g b.w.) of mineral oil or high EPA or high DHA fish oils (FOs) for two weeks. Afterward, the rats were subjected to HS and the respective treatments concomitantly for an additional two-week period. After four weeks, we evaluated ERS and autophagy markers in the soleus muscle. Results were analyzed using two-way analysis of variance (ANOVA) and Bonferroni post hoc test. Gastrocnemius muscle ω-6/ω-3 fatty acids (FAs) ratio was decreased by both FOs indicating the tissue incorporation of omega-3 fatty acids. HS altered (p < 0.05) the protein content (decreasing total p38 and BiP and increasing p-JNK2/total JNK2 ratio, and caspase 3) and gene expressions (decreasing BiP and increasing IRE1 and PERK) of ERS and autophagy (decreasing Beclin and increasing LC3 and ATG14) markers in soleus. Both FOs attenuated (p < 0.05) the increase in PERK and ATG14 expressions induced by HS. Thus, both FOs could potentially attenuate ERS and autophagy in skeletal muscles undergoing atrophy.
Collapse
Affiliation(s)
- Gabriel Nasri Marzuca-Nassr
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (W.M.T.K.); (K.F.V.); (T.C.A.-L.); (R.C.)
- Correspondence: ; Tel.: +56-45-2596713
| | - Wilson Mitsuo Tatagiba Kuwabara
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (W.M.T.K.); (K.F.V.); (T.C.A.-L.); (R.C.)
| | - Kaio Fernando Vitzel
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (W.M.T.K.); (K.F.V.); (T.C.A.-L.); (R.C.)
- School of Health Sciences, College of Health, Massey University, Auckland 0745, New Zealand
| | - Gilson Masahiro Murata
- Nephrology Division, Medical Investigation Laboratory-29 (LIM-29), Medical School, University of São Paulo (FM-USP), São Paulo 01246-903, Brazil;
| | - Rosângela Pavan Torres
- Department of Lipids Laboratory, Food Science & Nutrition, Faculty of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, Brazil; (R.P.T.); (J.M.-F.)
| | - Jorge Mancini-Filho
- Department of Lipids Laboratory, Food Science & Nutrition, Faculty of Pharmaceutical Science, University of São Paulo, São Paulo 05508-000, Brazil; (R.P.T.); (J.M.-F.)
| | - Tatiana Carolina Alba-Loureiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (W.M.T.K.); (K.F.V.); (T.C.A.-L.); (R.C.)
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (W.M.T.K.); (K.F.V.); (T.C.A.-L.); (R.C.)
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
- Butantan Institute, São Paulo 05508-040, Brazil
| |
Collapse
|
10
|
Sun J, Yang H, Yang X, Chen X, Xu H, Shen Y, Ding F, Gu X, Zhu J, Sun H. Global alternative splicing landscape of skeletal muscle atrophy induced by hindlimb unloading. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:643. [PMID: 33987341 PMCID: PMC8106077 DOI: 10.21037/atm-20-5388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Long-term exposure to microgravity will cause skeletal muscle atrophy, which can cause serious harm to astronauts in space travel. Therefore, it is important to explore skeletal muscle atrophy’s molecular mechanism for its prevention and treatment. However, as an important regulatory approach of skeletal muscle physiology, the role of alternative splicing in skeletal muscle atrophy, especially skeletal muscle atrophy caused by disuse, is unclear. Methods We established a rat hindlimb unloading model and performed RNA sequencing on soleus muscle, which was seriously atrophied during unloading. Several bioinformatics methods were used to identify alternative splicing events and determine their gene functions. Results Many alternative splicing events were found to occur at different time points (12 h, 24 h, 36 h, 3 days, and 7 days) after hindlimb unloading. These differential alternative splicing events mainly occurred in the gene's coding domain sequence region, and 59% of the alternative splicing events caused open reading frameshift. Bioinformatics analysis results showed that genes with different alternative splicing events were enriched in multiple pathways related to muscle atrophy, including the insulin signaling pathway, endocytosis, mitophagy, and ubiquitin-proteasome pathway. Moreover, alternative splicing of several deubiquitinase genes persisted during skeletal muscle atrophy induced by unloading. Additionally, we identified 10 differentially expressed RNA binding proteins during skeletal muscle atrophy induced by unloading, mainly containing Xpo4, Eif4e2, P4ha1, Lrrfip1, Zc3h14, Emg1, Hnrnp h1, Mbnl2, RBfox1, and Mbnl1. Hnrnp h1 and Mbnl2 were significantly downregulated, and RBfox1 and Mbnl1 were significantly upregulated during skeletal muscle atrophy caused by unloading. Conclusions To the best of our knowledge, the present study is the first to propose alternative splicing alterations related to disuse-induced muscle atrophy, emphasizing that alternative splicing is a new focus of attention in the occurrence of muscle atrophy.
Collapse
Affiliation(s)
- Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hua Yang
- Department of Neurosurgery, People's Hospital of Binhai County, Yancheng, China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xin Chen
- Department of Neurology, Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Hua Xu
- Department of Neurology, Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jianwei Zhu
- Department of Neurology, Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
11
|
Muramatsu H, Kuramochi T, Katada H, Ueyama A, Ruike Y, Ohmine K, Shida-Kawazoe M, Miyano-Nishizawa R, Shimizu Y, Okuda M, Hori Y, Hayashi M, Haraya K, Ban N, Nonaka T, Honda M, Kitamura H, Hattori K, Kitazawa T, Igawa T, Kawabe Y, Nezu J. Novel myostatin-specific antibody enhances muscle strength in muscle disease models. Sci Rep 2021; 11:2160. [PMID: 33495503 PMCID: PMC7835227 DOI: 10.1038/s41598-021-81669-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/08/2021] [Indexed: 11/22/2022] Open
Abstract
Myostatin, a member of the transforming growth factor-β superfamily, is an attractive target for muscle disease therapy because of its role as a negative regulator of muscle growth and strength. Here, we describe a novel antibody therapeutic approach that maximizes the potential of myostatin-targeted therapy. We generated an antibody, GYM329, that specifically binds the latent form of myostatin and inhibits its activation. Additionally, via "sweeping antibody technology", GYM329 reduces or "sweeps" myostatin in the muscle and plasma. Compared with conventional anti-myostatin agents, GYM329 and its surrogate antibody exhibit superior muscle strength-improvement effects in three different mouse disease models. We also demonstrate that the superior efficacy of GYM329 is due to its myostatin specificity and sweeping capability. Furthermore, we show that a GYM329 surrogate increases muscle mass in normal cynomolgus monkeys without any obvious toxicity. Our findings indicate the potential of GYM329 to improve muscle strength in patients with muscular disorders.
Collapse
Affiliation(s)
- Hiroyasu Muramatsu
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Taichi Kuramochi
- Chugai Pharmabody Research Pte. Ltd., 3 Biopolis Drive, #07-11 to 16, Synapse, Singapore, 138623, Singapore
| | - Hitoshi Katada
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Atsunori Ueyama
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Yoshinao Ruike
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Ken Ohmine
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | | | | | - Yuichiro Shimizu
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Momoko Okuda
- Chugai Pharmabody Research Pte. Ltd., 3 Biopolis Drive, #07-11 to 16, Synapse, Singapore, 138623, Singapore
| | - Yuji Hori
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Madoka Hayashi
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Kenta Haraya
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Nobuhiro Ban
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Tatsuya Nonaka
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Masaki Honda
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Hidetomo Kitamura
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Kunihiro Hattori
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Takehisa Kitazawa
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Tomoyuki Igawa
- Chugai Pharmabody Research Pte. Ltd., 3 Biopolis Drive, #07-11 to 16, Synapse, Singapore, 138623, Singapore
| | - Yoshiki Kawabe
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan
| | - Junichi Nezu
- Research Division, Chugai Pharmaceutical Co., Ltd., Tokyo, 103-8324, Japan.
| |
Collapse
|
12
|
Cui Q, Yang H, Gu Y, Zong C, Chen X, Lin Y, Sun H, Shen Y, Zhu J. RNA sequencing (RNA-seq) analysis of gene expression provides new insights into hindlimb unloading-induced skeletal muscle atrophy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 8:1595. [PMID: 33437794 PMCID: PMC7791259 DOI: 10.21037/atm-20-7400] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Weightlessness-induced skeletal muscle atrophy, accompanied by complex biochemical and physiological changes, has potentially damaged consequences. However, there is still an insufficient effective strategy to treat skeletal muscle atrophy. Therefore, exploring the molecular mechanisms regulating skeletal muscle atrophy and effective protection is necessary. Methods RNA sequencing (RNA-seq) analysis was used to detect differentially expressed genes (DEGs) in the soleus muscle at 12, 24, 36 hours, three days, and seven days after hindlimb unloading in rats. Pearson correlation heatmaps and principal component analysis (PCA) were applied to analyze DEGs’ expression profiles. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used for cluster analysis of DEGs. Ingenuity pathway analysis (IPA) was used to analyze specific biological processes further. Results At different time points (12, 24, 36 hours, three days, seven days) after hindlimb unloading, the expression levels of 712, 1,109, 1,433, 1,162, and 1,182 genes in rat soleus muscle were upregulated, respectively, whereas the expression levels of 1,186, 1,324, 1,632, 1,446, and 1,596 genes were downregulated, respectively. PCA revealed that rat soleus muscle showed three different transcriptional phases within seven days after hindlimb unloading. KEGG and GO annotation indicated that the first transcriptional phase primarily involved the activation of stress responses, including oxidative stress, and the inhibition of cell proliferation and angiogenesis; the second transcriptional phase primarily involved the activation of proteolytic systems and, to a certain degree, inflammatory responses; and the third transcriptional phase primarily involved extensive activation of the proteolytic system, significant inhibition of energy metabolism, and activation of the aging process and slow-to-fast muscle conversion. Conclusions Different physiological processes in rat skeletal muscles were activated sequentially after unloading. From these activated biological processes, the three transcriptional phases after skeletal muscle unloading can be successively defined as the stress response phase, the atrophic initiation phase, and the atrophic phase. Our study not only helps in the understanding of the molecular mechanisms underlying weightlessness-induced muscle atrophy but may also provide an important time window for the treatment and prevention of weightlessness-induced muscle atrophy.
Collapse
Affiliation(s)
- Qihao Cui
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Hua Yang
- Department of Neurosurgery, People's Hospital of Binhai County, Yancheng, China
| | - Yuming Gu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Chenyu Zong
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yinghao Lin
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|