1
|
MacBeth N, Mardas N, Davis G, Donos N. Healing patterns of alveolar bone following ridge preservation procedures. Clin Oral Implants Res 2024; 35:1452-1466. [PMID: 39105326 DOI: 10.1111/clr.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 08/07/2024]
Abstract
OBJECTIVES Examine the histomorphometric bone composition, following alveolar ridge preservation techniques and unassisted socket healing. MATERIALS AND METHODS Forty-two patients (42) requiring a single rooted tooth extraction were randomly allocated into three groups (n = 14 per group): Group 1: Guided Bone Regeneration (GBR) using deproteinised bovine bone mineral (DBBM) and a porcine collagen membrane; Group 2: Socket Seal (SS) technique using DBBM and a porcine collagen matrix; Group 3: Unassisted socket healing (Control). Trephined bone biopsies were harvested following a 4-month healing period. Forty-two samples underwent Back-Scattered Electrons -Scanning Electron Microscopy (BSE-SEM) imaging, with 15 samples examined using Xray Micro-Tomography (XMT) (n = 6 for each GBR/SS and n = 3 Control). Images were analysed to determine the percentage (%) of connective tissue, new bone formation, residual DBBM particles and direct bone to DBBM particle contact (osseointegration). RESULTS BSE-SEM analysis demonstrated that new bone formation was higher in the Control (45.89% ± 11.48) compared to both GBR (22.12% ± 12.7/p < .004) and SS (27.62% ± 17.76/p < .005) groups. The connective tissue percentage in GBR (49.72% ± 9), SS (47.81% ± 12.57) and Control (47.81% ± 12.57) groups was similar. GBR (28.17% ± 16.64) and SS (24.37% ± 18.61) groups had similar levels of residual DBBM particles. XMT volumetric analysis indicated a lower level of bone and DBBM particles in all test groups, when matched to the BSE-SEM area measurements. Osseointegration levels (DBBM graft and bone) were recorded at 35.66% (± 9.8) for GBR and 31.18% (± 19.38) for SS. CONCLUSION GBR and SS ARP techniques presented with less bone formation when compared to unassisted healing. GBR had more direct contact/osseointegration between the DBBM particles and newly formed bone.
Collapse
Affiliation(s)
- Neil MacBeth
- Centre for Oral Clinical Research, Institute of Dentistry, Queen Mary University of London (QMUL), Bart's & The London School of Medicine & Dentistry, London, UK
- Defence Centre for Rehabilitative Dentistry, Defence Primary Health Care (DPHC), Dental Centre Aldershot, Guilford, Surry, UK
| | - Nikos Mardas
- Centre for Oral Clinical Research, Institute of Dentistry, Queen Mary University of London (QMUL), Bart's & The London School of Medicine & Dentistry, London, UK
| | - Graham Davis
- Centre for Oral Bioengineering, Institute of Dentistry, QMUL, Bart's & The London School of Medicine & Dentistry, London, UK
| | - Nikos Donos
- Centre for Oral Clinical Research, Institute of Dentistry, Queen Mary University of London (QMUL), Bart's & The London School of Medicine & Dentistry, London, UK
| |
Collapse
|
2
|
Kaur M, Anderson P, Shahid S, Davis GR, Mills D, Wong FSL. Effects of silver diammine fluoride with/without potassium iodide on enamel and dentin carious lesions in primary teeth. FRONTIERS IN ORAL HEALTH 2024; 5:1465956. [PMID: 39253559 PMCID: PMC11381402 DOI: 10.3389/froh.2024.1465956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Aim To assess the effects of SDF and SDF+KI treatment on enamel and dentin carious lesions in primary teeth using x-ray Microtomography (XMT) and back scattered scanning electron microscopy (BSE-SEM). Methods Artificial enamel caries of 3 caries free primary teeth were created by immersion of the samples in 50 ml demineralization solution for 72 h. Three other teeth with natural dentin caries were selected. Both groups were divided into 3 subgroups: EC-Enamel Control; ES-Enamel with SDF application; ESK-Enamel with SDF followed by KI application; DC-Dentin Control; DS-Dentin with SDF application; DSK-Dentin with SDF followed by KI application. Each tooth was imaged using XMT at 3 time points: (1) Pretreatment; (2) after immersion in remineralization solution for 120 h, with or without SDF or SDF+KI; (3) after subsequent immersion in demineralization solution for 72 h. The change of radiopacities of the lesions in these time points were assessed from the XMT images. After the XMT scans, all teeth were investigated microscopically using BSE-SEM. Results In EC, no change in linear attenuation coefficient (LAC) was observed after remineralization, but LAC reduction was observed after subsequent demineralization. For ES, thin layer of high LAC material was deposited on the enamel surface after remineralization, and further reduction of LAC was observed after demineralization. In ESK, the surface layer was lost after SDF+KI, and small reduction of LAC was observed after demineralization. In DC, no LAC change was observed after remineralization, but reduction of LAC was detected after demineralization. In DS, high LAC material was formed on the carious dentin surface and randomly inside the lesion. No further LAC change was found after demineralization. In DSK, thick layer of high LAC material was deposited on the carious surface and inside the dentinal tubules. No further LAC reduction was found after subsequent demineralization. Conclusion SDF and SDF+KI did not protect artificial enamel under acid attack even though Ag products were deposited in the porous enamel. However, SDF and SDF+KI shows protective properties against acid challenges and Ag products are deposited in carious dentin lesion without tubular structure randomly; and within dentinal tubules when these structures are retained.
Collapse
Affiliation(s)
- M Kaur
- Centre for Oral Bioengineering, Barts and the London School of Medicine and Dentistry Queen Mary, University of London, London, United Kingdom
| | - P Anderson
- Centre for Oral Bioengineering, Barts and the London School of Medicine and Dentistry Queen Mary, University of London, London, United Kingdom
| | - S Shahid
- Centre for Oral Bioengineering, Barts and the London School of Medicine and Dentistry Queen Mary, University of London, London, United Kingdom
| | - G R Davis
- Centre for Oral Bioengineering, Barts and the London School of Medicine and Dentistry Queen Mary, University of London, London, United Kingdom
| | - D Mills
- Centre for Oral Bioengineering, Barts and the London School of Medicine and Dentistry Queen Mary, University of London, London, United Kingdom
| | - F S L Wong
- Centre for Oral Bioengineering, Barts and the London School of Medicine and Dentistry Queen Mary, University of London, London, United Kingdom
| |
Collapse
|
3
|
Vom Scheidt A, Krug J, Goggin P, Bakker AD, Busse B. 2D vs. 3D Evaluation of Osteocyte Lacunae - Methodological Approaches, Recommended Parameters, and Challenges: A Narrative Review by the European Calcified Tissue Society (ECTS). Curr Osteoporos Rep 2024; 22:396-415. [PMID: 38980532 PMCID: PMC11324773 DOI: 10.1007/s11914-024-00877-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE OF REVIEW Quantification of the morphology of osteocyte lacunae has become a powerful tool to investigate bone metabolism, pathologies and aging. This review will provide a brief overview of 2D and 3D imaging methods for the determination of lacunar shape, orientation, density, and volume. Deviations between 2D-based and 3D-based lacunar volume estimations are often not sufficiently addressed and may give rise to contradictory findings. Thus, the systematic error arising from 2D-based estimations of lacunar volume will be discussed, and an alternative calculation proposed. Further, standardized morphological parameters and best practices for sampling and segmentation are suggested. RECENT FINDINGS We quantified the errors in reported estimation methods of lacunar volume based on 2D cross-sections, which increase with variations in lacunar orientation and histological cutting plane. The estimations of lacunar volume based on common practice in 2D imaging methods resulted in an underestimation of lacunar volume of up to 85% compared to actual lacunar volume in an artificial dataset. For a representative estimation of lacunar size and morphology based on 2D images, at least 400 lacunae should be assessed per sample.
Collapse
Affiliation(s)
- Annika Vom Scheidt
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Auenbruggerplatz 25, Graz, 8036, Austria.
| | - Johannes Krug
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529, Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research, University Medical Center Hamburg-Eppendorf, Butenfeld 34, 22529, Hamburg, Germany
| | - Patricia Goggin
- Biomedical Imaging Unit, Laboratory and Pathology Block, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| | - Astrid Diana Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam Movement Sciences, University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan, Amsterdam, 3004, 1081 LA, The Netherlands
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529, Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research, University Medical Center Hamburg-Eppendorf, Butenfeld 34, 22529, Hamburg, Germany
| |
Collapse
|
4
|
Avanzi IR, Parisi JR, Souza A, Cruz MA, Martignago CCS, Ribeiro DA, Braga ARC, Renno AC. 3D-printed hydroxyapatite scaffolds for bone tissue engineering: A systematic review in experimental animal studies. J Biomed Mater Res B Appl Biomater 2023; 111:203-219. [PMID: 35906778 DOI: 10.1002/jbm.b.35134] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/14/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022]
Abstract
The use of 3D-printed hydroxyapatite (HA) scaffolds for stimulating bone healing has been increasing over the years. Although all the promising effects of these scaffolds, there are still few studies and limited understanding of their interaction with bone tissue and their effects on the process of fracture healing. In this context, this study aimed to perform a systematic literature review examining the effects of different 3D-printed HA scaffolds in bone healing. The search was made according to the preferred reporting items for systematic reviews and meta-analysis (PRISMA) orientations and Medical Subject Headings (MeSH) descriptors "3D printing," "bone," "HA," "repair," and "in vivo." Thirty-six articles were retrieved from PubMed and Scopus databases. After eligibility analyses, 20 papers were included (covering the period of 2016 and 2021). Results demonstrated that all the studies included in this review showed positive outcomes, indicating the efficacy of scaffolds treated groups in the in vivo experiments for promoting bone healing in different animal models. In conclusion, 3D-printed HA scaffolds are excellent candidates as bone grafts due to their bioactivity and good bone interaction.
Collapse
Affiliation(s)
- Ingrid Regina Avanzi
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil.,São Paulo State Faculty of Technology (FATEC), Santos, Brazil
| | | | - Amanda Souza
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - Matheus Almeida Cruz
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | | | - Daniel Araki Ribeiro
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - Anna Rafaela Cavalcante Braga
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil.,Department of Chemical Engineering, Federal University of São Paulo (UNIFESP), Diadema, Brazil
| | - Ana Claudia Renno
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, Brazil
| |
Collapse
|
5
|
Yao S, Du Z, Xiao L, Yan F, Ivanovski S, Xiao Y. Morphometric Changes of Osteocyte Lacunar in Diabetic Pig Mandibular Cancellous Bone. Biomolecules 2022; 13:biom13010049. [PMID: 36671434 PMCID: PMC9856050 DOI: 10.3390/biom13010049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Osteocytes play an important role in bone metabolism. The interactions of osteocytes with the surrounding microenvironment can alter cellular and lacunar morphological changes. However, objective quantification of osteocyte lacunae is challenging due to their deep location in the bone matrix. This project established a novel method for the analytical study of osteocytes/lacunae, which was then used to evaluate the osteocyte morphological changes in diabetic pig mandibular bone. Eight miniature pigs were sourced, and diabetes was randomly induced in four animals using streptozotocin (STZ) administration. The mandibular tissues were collected and processed. The jawbone density was evaluated with micro-CT. Osteocyte lacunae were effectively acquired and identified using backscattered electron scanning microscopy (BSE). A significantly decreased osteocyte lacunae size was found in the diabetic group. Using the acid etching method, it was demonstrated that the area of osteocyte and lacunae, and the pericellular areas were both significantly reduced in the diabetes group. In conclusion, a standard and relatively reliable method for analyzing osteocyte/lacunae morphological changes under compromised conditions has been successfully established. This method demonstrates that diabetes can significantly decrease osteocyte/lacunae size in a pig's mandibular cancellous bone.
Collapse
Affiliation(s)
- Sheng Yao
- School of Mechanical, Medical and Process Engineering, Center of Biomedical Technology, Queensland University of Technology, Brisbane, QLD 4059, Australia
- The First Hospital of Wuhan, Wuhan 430033, China
| | - Zhibin Du
- School of Mechanical, Medical and Process Engineering, Center of Biomedical Technology, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Lan Xiao
- School of Mechanical, Medical and Process Engineering, Center of Biomedical Technology, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Saso Ivanovski
- School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Yin Xiao
- School of Mechanical, Medical and Process Engineering, Center of Biomedical Technology, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD 4059, Australia
- School of Medicine and Dentistry & Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia
- Correspondence:
| |
Collapse
|
6
|
Influence of Chinese Herbal Formula on Bone Characteristics of Cobb Broiler Chickens. Genes (Basel) 2022; 13:genes13101865. [PMID: 36292748 PMCID: PMC9601401 DOI: 10.3390/genes13101865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/04/2022] Open
Abstract
To evaluate the prevention and treatment effect of a Chinese herbal formula (CHF) on the bone disease of Cobb broiler chickens, compare its efficacy with Bisphosphonates (BPs), and provide a theoretical basis for studying the nutritional regulation technology of CHF to improve the bone characteristics of broiler chickens. In this study, 560 one-day-old Cobb broiler chickens were examined for the influence of Chinese herbal formula (CHF) and Bisphosphonates (BPs). Different doses of CHF and BPs were added to the diet, and the 30- and 60-day-old live weight, tibial bone strength, the microstructure of the distal femur cancellous bone, blood biochemical indexes related to bone metabolism, and genes related to bone metabolism were determined and analyzed. The results showed that the live weight of Cobb broilers fed with CHF and BPs in the diet was as follows: The live weight of the CHF group was higher than that of the normal control (NC) group, while the live weight of the BPs group was lower than that of the NC group; the CHF and BPs improved the bone strength of Cobb broilers and increased the elastic modulus, yield strength, and maximum stress of the tibia. CHF and BPs increased the cancellous bone mineral density (BMD), bone tissue ratio (BV/TV), bone surface area tissue volume ratio (BS/TV), bone trabecular thickness (Tb.Th), and bone trabecular number (Tb.N) in the distal femur, and decreased the bone surface area bone volume ratio (BS/BV) and bone trabecular separation (Tb.Sp). Thus, the microstructure of the bone tissue of the distal femur was improved to a certain extent. Both the CHF and the BPs also increased the serum levels of the vitamin D receptor (VDR), osteoprotegerin (OPG), and alkaline phosphatase (ALP), and decreased the content of osteocalcin (OT). Meanwhile, CHF and BPs upregulated the expression of osteogenic genes (BMP-2, OPG, Runx-2) to promote bone formation and downregulated the expression of osteoclastic genes (RANK, RANKL, TNF-α) to inhibit bone resorption, thus affecting bone metabolism. Conclusion: The CHF could improve the skeletal characteristics of Cobb broilers by upregulating the expression of bone-forming-related genes and downregulating the expression of bone-breaking-related genes, thus preventing and controlling skeletal diseases in Cobb broilers. Its effect was comparable to that of BPs. Meanwhile, the CHF-H group achieved the best results in promoting the growth and improvement of the skeletal characteristics of Cobb broilers based on the live weight and skeletal-characteristics-related indexes.
Collapse
|
7
|
Calejo I, Reis RL, Domingues RMA, Gomes ME. Texturing Hierarchical Tissues by Gradient Assembling of Microengineered Platelet-Lysates Activated Fibers. Adv Healthc Mater 2022; 11:e2102076. [PMID: 34927396 DOI: 10.1002/adhm.202102076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/14/2021] [Indexed: 11/07/2022]
Abstract
The heterogeneity of hierarchical tissues requires designing multipart engineered constructs as suitable tissue replacements. Herein, the incorporation of platelet lysate (PL) within an electrospun fiber core is proposed aiming for the fabrication of functionally graded 3D scaffolds for heterotypic tissues regeneration, such as tendon-to-bone interfaces. First, anisotropic yarns (A-Yarns) and isotropic threads with nanohydroxyapatite (I-Threads/PL@nHAp) are fabricated to recreate the tendon- and bone-microstructures and both incorporated with PL using emulsion electrospinning for a sustained and local delivery of growth factors, cytokines, and chemokines. Biological performance using human adipose-derived stem cells demonstrates that A-Yarns/PL induce a higher expression of scleraxis, a tenogenic-marker, while in I-Threads/PL@nHAp, higher alkaline phosphatase activity and matrix mineralization suggest an osteogenic commitment without the need for biochemical supplementation compared to controls. As a proof-of-concept, functional 3D gradient scaffolds are fabricated using a weaving technique, resulting in 3D textured hierarchical constructs with gradients in composition and topography. Additionally, the precise delivery of bioactive cues together with in situ biophysical features guide the commitment into a phenotypic gradient exhibiting chondrogenic and osteochondrogenic profiles in the interface of scaffolds. Overall, a promising patch solution for the regeneration of tendon-to-bone tissue interface through the fabrication of PL-functional 3D gradient constructs is demonstrated.
Collapse
Affiliation(s)
- Isabel Calejo
- 3B's Research Group i3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Barco Guimarães 4805‐017 Portugal
| | - Rui L. Reis
- 3B's Research Group i3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Barco Guimarães 4805‐017 Portugal
| | - Rui M. A. Domingues
- 3B's Research Group i3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Barco Guimarães 4805‐017 Portugal
| | - Manuela E. Gomes
- 3B's Research Group i3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Barco Guimarães 4805‐017 Portugal
| |
Collapse
|
8
|
Caiyu L, Nakamura M, Mayanagi M, Kayaba A, Sasano Y. Three-dimensional visualization of osteoclasts in embryonic mouse mandibles using SEM array tomography. J Oral Biosci 2021; 63:401-407. [PMID: 34699964 DOI: 10.1016/j.job.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Three-dimensional (3-D) images of osteoclasts in vivo have been elusive, due to their large size and intricate morphology. The present study was designed to reconstruct the 3-D morphology of whole osteoclasts in developing mouse mandibles using scanning electron microscopy (SEM) array tomography. METHODS Mandibles of 16 days post coitum mouse embryos were fixed and embedded in epoxy resin after decalcification. Epoxy blocks were trimmed, and serial sections of 1 μm in thickness were cut with an ultramicrotome and mounted on glass microscope slides. Consecutive images of every fourth or fifth serial section were obtained by SEM after electron staining and platinum coating. Three dimensional reconstruction of osteoclasts was performed using these consecutive images. RESULTS Multinucleated osteoclasts were observed to cluster around developing bone in the embryonic mouse mandible. The outlines of osteoclasts and their sealing zones were identified in the serial sections. The reconstructed 3-D image revealed whole osteoclast morphology with the sealing zone. Osteoclasts were adherent to bone with the anchoring structure between the osteoclast and the bone. CONCLUSIONS SEM array tomography with our modification revealed 3-D imagery of a whole osteoclast and its sealing zone in vivo for the first time. This methodology could provide useful information on in vivo structures and dynamics of large cells, such as osteoclasts.
Collapse
Affiliation(s)
- Liao Caiyu
- Division of Craniofacial Development and Regeneration, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; Division of Oral and Maxillofacial Surgery, Fujian Medical University Graduate School of Dentistry, Fuzhou, Fujian, China
| | - Megumi Nakamura
- Division of Craniofacial Development and Regeneration, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Miyuki Mayanagi
- Division of Craniofacial Development and Regeneration, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Atsuko Kayaba
- Division of Craniofacial Development and Regeneration, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Yasuyuki Sasano
- Division of Craniofacial Development and Regeneration, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan.
| |
Collapse
|
9
|
Manivasagam VK, Popat KC. Hydrothermally treated titanium surfaces for enhanced osteogenic differentiation of adipose derived stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112315. [PMID: 34474866 DOI: 10.1016/j.msec.2021.112315] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/20/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Implant surface plays a crucial role in improving osseointegration and long-term implant life. When the implant comes in contact with the bone tissue, the bone marrow mesenchymal cells interact with the implant surface and the surface properties such as morphology, wettability, mechanical properties and chemistry influences cell migration, proliferation and differentiation. Different surface modification strategies such as ceramic coatings, surface dealloying, and surface topography modifications for improving osteointegration have been investigated. However, studies have not yet established which of the surface property is more influential. In this study, titanium surfaces were treated hydrothermally with sodium hydroxide and sulfuric acid separately. This treatment led to the development of two unique surface topography at nanoscale. These modified surfaces were characterized for surface morphology, wettability, chemistry, and crystallinity. Cytotoxicity, cell adhesion, proliferation, morphology, and differentiation of adipose derived stem cells on modified surfaces was investigated. The results indicate that wettability does influence initial cell adhesion. However, the surface morphology can play major role in cell spreading, proliferation and differentiation. The results indicate that titanium surfaces treated hydrothermally with sodium hydroxide led to a nanoporous architecture that promoted appropriate cell interaction with the surface promoting osteoblastic lineage.
Collapse
Affiliation(s)
- Vignesh K Manivasagam
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Ketul C Popat
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA; School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
10
|
Abstract
This review describes results obtained with tissue from prior studies of equine and human osteoarthritis (OA). The main methods considered are scanning electron microscopy, novel methods in light microscopy and X-ray Micro-tomography. The same samples have been re-utilised in several ways. The tissues described are hyaline articular cartilage (HAC; or substitutes), with its deep layer, articular calcified cartilage (ACC), whose deep surface is resorbed in cutting cone events to allow the deposition of subchondral bone (SCB). Multiple tidemarks are normal. Turnover at the osteochondral (ACC-HAC-SCB) junction is downregulated by overload exercise, conversely, during rest periods. Consequent lack of support predisposes to microfracture of the ACC-SCB plate, in the resorption-related repair phase of which the plate is further undermined to form sink holes. The following characteristics contribute to the OA scenario: penetrating resorption canals and local loss of ACC; cracking of ACC and SCB; sealing of cracks with High-Density Mineral Infill (HDMI); extrusion of HDMI into HAC to form High-Density Mineral Protrusions (HDMP) in HAC which may fragment and contribute to its destruction; SCB marrow space infilling and densification with (at first) woven bone; disruption, fibrillation and loss of HAC; eburnation; repair with abnormal tissues including fibrocartilage and woven bone; attachment of Sharpey fibres to SCB trabeculae and adipocyte-moulded extensions to trabeculae (excrescences).
Collapse
Affiliation(s)
- Alan Boyde
- Dental Physical Sciences Imaging Unit, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Mile End Campus, London, E1 4NS, UK.
| |
Collapse
|
11
|
Zimmermann EA, Fiedler IAK, Busse B. Breaking new ground in mineralized tissue: Assessing tissue quality in clinical and laboratory studies. J Mech Behav Biomed Mater 2020; 113:104138. [PMID: 33157423 DOI: 10.1016/j.jmbbm.2020.104138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
Mineralized tissues, such as bone and teeth, have extraordinary mechanical properties of both strength and toughness. This mechanical behavior originates from deformation and fracture resistance mechanisms in their multi-scale structure. The term quality describes the matrix composition, multi-scale structure, remodeling dynamics, water content, and micro-damage accumulation in the tissue. Aging and disease result in changes in the tissue quality that may reduce strength and toughness and lead to elevated fracture risk. Therefore, the capability to measure the quality of mineralized tissues provides critical information on disease progression and mechanical integrity. Here, we provide an overview of clinical and laboratory-based techniques to assess the quality of mineralized tissues in health and disease. Current techniques used in clinical settings include radiography-based (radiographs, dual energy x-ray absorptiometry, EOS) and x-ray tomography-based methods (high resolution peripheral quantitative computed tomography, cone beam computed tomography). In the laboratory, tissue quality can be investigated in ex vivo samples with x-ray imaging (micro and nano-computed tomography, x-ray microscopy), electron microscopy (scanning/transmission electron imaging (SEM/STEM), backscattered scanning electron microscopy, Focused Ion Beam-SEM), light microscopy, spectroscopy (Raman spectroscopy and Fourier transform infrared spectroscopy) and assessment of mechanical behavior (mechanical testing, fracture mechanics and reference point indentation). It is important for clinicians and basic science researchers to be aware of the techniques available in different types of research. While x-ray imaging techniques translated to the clinic have provided exceptional advancements in patient care, the future challenge will be to incorporate high-resolution laboratory-based bone quality measurements into clinical settings to broaden the depth of information available to clinicians during diagnostics, treatment and management of mineralized tissue pathologies.
Collapse
Affiliation(s)
| | - Imke A K Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
12
|
Relucenti M, Miglietta S, Bove G, Donfrancesco O, Battaglione E, Familiari P, Barbaranelli C, Covelli E, Barbara M, Familiari G. SEM BSE 3D Image Analysis of Human Incus Bone Affected by Cholesteatoma Ascribes to Osteoclasts the Bone Erosion and VpSEM dEDX Analysis Reveals New Bone Formation. SCANNING 2020; 2020:9371516. [PMID: 32158510 PMCID: PMC7048945 DOI: 10.1155/2020/9371516] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Bone erosion is considered a typical characteristic of advanced or complicated cholesteatoma (CHO), although it is still a matter of debate if bone erosion is due to osteoclast action, being the specific literature controversial. The purpose of this study was to apply a novel scanning characterization approach, the BSE 3D image analysis, to study the pathological erosion on the surface of human incus bone involved by CHO, in order to definitely assess the eventual osteoclastic resorptive action. To do this, a comparison of BSE 3D image of resorption lacunae (resorption pits) from osteoporotic human femur neck (indubitably of osteoclastic origin) with that of the incus was performed. Surface parameters (area, mean depth, and volume) were calculated by the software Hitachi MountainsMap© from BSE 3D-reconstructed images; results were then statistically analyzed by SPSS statistical software. Our findings showed that no significant differences exist between the two groups. This quantitative approach implements the morphological characterization, allowing us to state that surface erosion of the incus is due to osteoclast action. Moreover, our observation and processing image workflow are the first in the literature showing the presence not only of bone erosion but also of matrix vesicles releasing their content on collagen bundles and self-immuring osteocytes, all markers of new bone formation on incus bone surface. On the basis of recent literature, it has been hypothesized that inflammatory environment induced by CHO may trigger the osteoclast activity, eliciting bone erosion. The observed new bone formation probably takes place at a slower rate in respect to the normal bone turnover, and the process is uncoupled (as recently demonstrated for several inflammatory diseases that promote bone loss) thus resulting in an overall bone loss. Novel scanning characterization approaches used in this study allowed for the first time the 3D imaging of incus bone erosion and its quantitative measurement, opening a new era of quantitative SEM morphology.
Collapse
Affiliation(s)
- Michela Relucenti
- Department SAIMLAL Section of Human Anatomy, Laboratory of Electron Microscopy “Pietro M. Motta”, Sapienza University of Rome, Via Alfonso Borelli 50, 00161 Rome, Italy
| | - Selenia Miglietta
- Department SAIMLAL Section of Human Anatomy, Laboratory of Electron Microscopy “Pietro M. Motta”, Sapienza University of Rome, Via Alfonso Borelli 50, 00161 Rome, Italy
| | - Gabriele Bove
- Department SAIMLAL Section of Human Anatomy, Laboratory of Electron Microscopy “Pietro M. Motta”, Sapienza University of Rome, Via Alfonso Borelli 50, 00161 Rome, Italy
| | - Orlando Donfrancesco
- Department SAIMLAL Section of Human Anatomy, Laboratory of Electron Microscopy “Pietro M. Motta”, Sapienza University of Rome, Via Alfonso Borelli 50, 00161 Rome, Italy
| | - Ezio Battaglione
- Department SAIMLAL Section of Human Anatomy, Laboratory of Electron Microscopy “Pietro M. Motta”, Sapienza University of Rome, Via Alfonso Borelli 50, 00161 Rome, Italy
| | - Pietro Familiari
- Department NESMOS, Neurosurgery Unit, Sapienza University of Rome, Via di Grottarossa 1039, 00189 Rome, Italy
| | - Claudio Barbaranelli
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Edoardo Covelli
- Department NESMOS, ENT Unit, Sapienza University of Rome, Via di Grottarossa 1039, 00189 Rome, Italy
| | - Maurizio Barbara
- Department NESMOS, ENT Unit, Sapienza University of Rome, Via di Grottarossa 1039, 00189 Rome, Italy
| | - Giuseppe Familiari
- Department SAIMLAL Section of Human Anatomy, Laboratory of Electron Microscopy “Pietro M. Motta”, Sapienza University of Rome, Via Alfonso Borelli 50, 00161 Rome, Italy
| |
Collapse
|
13
|
Pathak JL, Bravenboer N, Klein-Nulend J. The Osteocyte as the New Discovery of Therapeutic Options in Rare Bone Diseases. Front Endocrinol (Lausanne) 2020; 11:405. [PMID: 32733380 PMCID: PMC7360678 DOI: 10.3389/fendo.2020.00405] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/20/2020] [Indexed: 01/18/2023] Open
Abstract
Osteocytes are the most abundant (~95%) cells in bone with the longest half-life (~25 years) in humans. In the past osteocytes have been regarded as vestigial cells in bone, since they are buried inside the tough bone matrix. However, during the last 30 years it has become clear that osteocytes are as important as bone forming osteoblasts and bone resorbing osteoclasts in maintaining bone homeostasis. The osteocyte cell body and dendritic processes reside in bone in a complex lacuno-canalicular system, which allows the direct networking of osteocytes to their neighboring osteocytes, osteoblasts, osteoclasts, bone marrow, blood vessels, and nerves. Mechanosensing of osteocytes translates the applied mechanical force on bone to cellular signaling and regulation of bone adaptation. The osteocyte lacuno-canalicular system is highly efficient in transferring external mechanical force on bone to the osteocyte cell body and dendritic processes via displacement of fluid in the lacuno-canalicular space. Osteocyte mechanotransduction regulates the formation and function of the osteoblasts and osteoclasts to maintain bone homeostasis. Osteocytes produce a variety of proteins and signaling molecules such as sclerostin, cathepsin K, Wnts, DKK1, DMP1, IGF1, and RANKL/OPG to regulate osteoblast and osteoclast activity. Various genetic abnormality-associated rare bone diseases are related to disrupted osteocyte functions, including sclerosteosis, van Buchem disease, hypophosphatemic rickets, and WNT1 and plastin3 mutation-related disorders. Meticulous studies during the last 15 years on disrupted osteocyte function in rare bone diseases guided for the development of various novel therapeutic agents to treat bone diseases. Studies on genetic, molecular, and cellular mechanisms of sclerosteosis and van Buchem disease revealed a role for sclerostin in bone homeostasis, which led to the development of the sclerostin antibody to treat osteoporosis and other bone degenerative diseases. The mechanism of many other rare bone diseases and the role of the osteocyte in the development of such conditions still needs to be investigated. In this review, we mainly discuss the knowledge obtained during the last 30 years on the role of the osteocyte in rare bone diseases. We speculate about future research directions to develop novel therapeutic drugs targeting osteocyte functions to treat both common and rare bone diseases.
Collapse
Affiliation(s)
- Janak L. Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jenneke Klein-Nulend
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, Amsterdam Movement Sciences, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: Jenneke Klein-Nulend
| |
Collapse
|