1
|
Sarb OF, Sarb AD, Iacobescu M, Vlad IM, Milaciu MV, Ciurmarnean L, Vacaras V, Tantau AI. From Gut to Brain: Uncovering Potential Serum Biomarkers Connecting Inflammatory Bowel Diseases to Neurodegenerative Diseases. Int J Mol Sci 2024; 25:5676. [PMID: 38891863 PMCID: PMC11171869 DOI: 10.3390/ijms25115676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/12/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Inflammatory bowel diseases (IBDs) are characterized by chronic gastrointestinal inflammation due to abnormal immune responses to gut microflora. The gut-brain axis is disrupted in IBDs, leading to neurobiological imbalances and affective symptoms. Systemic inflammation in IBDs affects the brain's inflammatory response system, hormonal axis, and blood-brain barrier integrity, influencing the gut microbiota. This review aims to explore the association between dysregulations in the gut-brain axis, serum biomarkers, and the development of cognitive disorders. Studies suggest a potential association between IBDs and the development of neurodegeneration. The mechanisms include systemic inflammation, nutritional deficiency, GBA dysfunction, and the effect of genetics and comorbidities. The objective is to identify potential correlations and propose future research directions to understand the impact of altered microbiomes and intestinal barrier functions on neurodegeneration. Serum levels of vitamins, inflammatory and neuronal damage biomarkers, and neuronal growth factors have been investigated for their potential to predict the development of neurodegenerative diseases, but current results are inconclusive and require more studies.
Collapse
Affiliation(s)
- Oliviu-Florentiu Sarb
- Department of Neuroscience, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.-F.S.); (I.-M.V.)
- Department of Internal Medicine, 4th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.-V.M.); (L.C.); (A.-I.T.)
| | - Adriana-Daniela Sarb
- Department of Internal Medicine, Heart Institute, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Maria Iacobescu
- Department of Proteomics and Metabolomics, MEDFUTURE Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Irina-Maria Vlad
- Department of Neuroscience, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.-F.S.); (I.-M.V.)
| | - Mircea-Vasile Milaciu
- Department of Internal Medicine, 4th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.-V.M.); (L.C.); (A.-I.T.)
| | - Lorena Ciurmarnean
- Department of Internal Medicine, 4th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.-V.M.); (L.C.); (A.-I.T.)
| | - Vitalie Vacaras
- Department of Neuroscience, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.-F.S.); (I.-M.V.)
| | - Alina-Ioana Tantau
- Department of Internal Medicine, 4th Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.-V.M.); (L.C.); (A.-I.T.)
| |
Collapse
|
2
|
Delangre E, Oppliger E, Berkcan S, Gjorgjieva M, Correia de Sousa M, Foti M. S100 Proteins in Fatty Liver Disease and Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms231911030. [PMID: 36232334 PMCID: PMC9570375 DOI: 10.3390/ijms231911030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 01/27/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent and slow progressing hepatic pathology characterized by different stages of increasing severity which can ultimately give rise to the development of hepatocellular carcinoma (HCC). Besides drastic lifestyle changes, few drugs are effective to some extent alleviate NAFLD and HCC remains a poorly curable cancer. Among the deregulated molecular mechanisms promoting NAFLD and HCC, several members of the S100 proteins family appear to play an important role in the development of hepatic steatosis, non-alcoholic steatohepatitis (NASH) and HCC. Specific members of this Ca2+-binding protein family are indeed significantly overexpressed in either parenchymal or non-parenchymal liver cells, where they exert pleiotropic pathological functions driving NAFLD/NASH to severe stages and/or cancer development. The aberrant activity of S100 specific isoforms has also been reported to drive malignancy in liver cancers. Herein, we discuss the implication of several key members of this family, e.g., S100A4, S100A6, S100A8, S100A9 and S100A11, in NAFLD and HCC, with a particular focus on their intracellular versus extracellular functions in different hepatic cell types. Their clinical relevance as non-invasive diagnostic/prognostic biomarkers for the different stages of NAFLD and HCC, or their pharmacological targeting for therapeutic purpose, is further debated.
Collapse
|
3
|
Promiscuity mapping of the S100 protein family using a high-throughput holdup assay. Sci Rep 2022; 12:5904. [PMID: 35393447 PMCID: PMC8991199 DOI: 10.1038/s41598-022-09574-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/16/2022] [Indexed: 11/08/2022] Open
Abstract
S100 proteins are small, typically homodimeric, vertebrate-specific EF-hand proteins that establish Ca2+-dependent protein-protein interactions in the intra- and extracellular environment and are overexpressed in various pathologies. There are about 20 distinct human S100 proteins with numerous potential partner proteins. Here, we used a quantitative holdup assay to measure affinity profiles of most members of the S100 protein family against a library of chemically synthetized foldamers. The profiles allowed us to quantitatively map the binding promiscuity of each member towards the foldamer library. Since the library was designed to systematically contain most binary natural amino acid side chain combinations, the data also provide insight into the promiscuity of each S100 protein towards all potential naturally occurring S100 partners in the human proteome. Such information will be precious for future drug design to interfere with S100 related pathologies.
Collapse
|
4
|
Wu L, Lian W, Zhao L. Calcium signaling in cancer progression and therapy. FEBS J 2021; 288:6187-6205. [PMID: 34288422 DOI: 10.1111/febs.16133] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/19/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023]
Abstract
The old Greek aphorism 'Panta Rhei' ('everything flows') is true for all living things in general. As a dynamic process, calcium signaling plays fundamental roles in cellular activities under both normal and pathological conditions, with recent researches uncovering its involvement in cell proliferation, migration, survival, gene expression, and more. The major question we address here is how calcium signaling affects cancer progression and whether it could be targeted to combine with classic chemotherapeutics or emerging immunotherapies to improve their efficacy.
Collapse
Affiliation(s)
- Ling Wu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China
| | - Weidong Lian
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Doi S, Fujioka N, Ohtsuka S, Kondo R, Yamamoto M, Denda M, Magari M, Kanayama N, Hatano N, Morishita R, Hasegawa T, Tokumitsu H. Regulation of the tubulin polymerization-promoting protein by Ca 2+/S100 proteins. Cell Calcium 2021; 96:102404. [PMID: 33831707 DOI: 10.1016/j.ceca.2021.102404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
To elucidate S100 protein-mediated signaling pathways, we attempted to identify novel binding partners for S100A2 by screening protein arrays carrying 19,676 recombinant glutathione S-transferase (GST)-fused human proteins with biotinylated S100A2. Among newly discovered putative S100A2 interactants, including TMLHE, TRH, RPL36, MRPS34, CDR2L, OIP5, and MED29, we identified and characterized the tubulin polymerization-promoting protein (TPPP) as a novel S100A2-binding protein. We confirmed the interaction of TPPP with Ca2+/S100A2 by multiple independent methods, including the protein array method, S100A2 overlay, and pulldown assay in vitro and in transfected COS-7 cells. Based on the results from the S100A2 overlay assay using various GST-TPPP mutants, the S100A2-binding region was identified in the C-terminal (residues 111-160) of the central core domain of a monomeric form of TPPP that is involved in TPPP dimerization. Chemical cross-linking experiments indicated that S100A2 suppresses dimer formation of His-tagged TPPP in a dose-dependent and a Ca2+-dependent manner. In addition to S100A2, TPPP dimerization is disrupted by other multiple S100 proteins, including S100A6 and S100B, in a Ca2+-dependent manner but not by S100A4. This is consistent with the fact that S100A6 and S100B, but not S100A4, are capable of interacting with GST-TPPP in the presence of Ca2+. Considering these results together, TPPP was identified as a novel target for S100A2, and it is a potential binding target for other multiple S100 proteins, including S100A6 and S100B. Direct binding of the S100 proteins with TPPP may cause disassembly of TPPP dimer formation in response to the increasing concentration of intracellular Ca2+, thus resulting in the regulation of the physiological function of TPPP, such as microtubule organization.
Collapse
Affiliation(s)
- Seita Doi
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Naoki Fujioka
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University, Okayama 700-8530, Japan
| | - Satomi Ohtsuka
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Rina Kondo
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Maho Yamamoto
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Miwako Denda
- CellFree Sciences Co., Ltd., Matsuyama, 790-8577, Japan
| | - Masaki Magari
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Naoki Kanayama
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Naoya Hatano
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Ryo Morishita
- CellFree Sciences Co., Ltd., Matsuyama, 790-8577, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Hiroshi Tokumitsu
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
6
|
Allgöwer C, Kretz AL, von Karstedt S, Wittau M, Henne-Bruns D, Lemke J. Friend or Foe: S100 Proteins in Cancer. Cancers (Basel) 2020; 12:cancers12082037. [PMID: 32722137 PMCID: PMC7465620 DOI: 10.3390/cancers12082037] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
S100 proteins are widely expressed small molecular EF-hand calcium-binding proteins of vertebrates, which are involved in numerous cellular processes, such as Ca2+ homeostasis, proliferation, apoptosis, differentiation, and inflammation. Although the complex network of S100 signalling is by far not fully deciphered, several S100 family members could be linked to a variety of diseases, such as inflammatory disorders, neurological diseases, and also cancer. The research of the past decades revealed that S100 proteins play a crucial role in the development and progression of many cancer types, such as breast cancer, lung cancer, and melanoma. Hence, S100 family members have also been shown to be promising diagnostic markers and possible novel targets for therapy. However, the current knowledge of S100 proteins is limited and more attention to this unique group of proteins is needed. Therefore, this review article summarises S100 proteins and their relation in different cancer types, while also providing an overview of novel therapeutic strategies for targeting S100 proteins for cancer treatment.
Collapse
Affiliation(s)
- Chantal Allgöwer
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Anna-Laura Kretz
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Silvia von Karstedt
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University Hospital Cologne, Weyertal 115b, 50931 Cologne, Germany;
- CECAD Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
- Center of Molecular Medicine Cologne, Medical Faculty, University Hospital of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Mathias Wittau
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Doris Henne-Bruns
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
| | - Johannes Lemke
- Department of General and Visceral Surgery, Ulm University Hospital, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (C.A.); (A.-L.K.); (M.W.); (D.H.-B.)
- Correspondence: ; Tel.: +49-731-500-53691
| |
Collapse
|
7
|
Hua X, Zhang H, Jia J, Chen S, Sun Y, Zhu X. Roles of S100 family members in drug resistance in tumors: Status and prospects. Biomed Pharmacother 2020; 127:110156. [PMID: 32335300 DOI: 10.1016/j.biopha.2020.110156] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy and targeted therapy can significantly improve survival rates in cancer, but multiple drug resistance (MDR) limits the efficacy of these approaches. Understanding the molecular mechanisms underlying MDR is crucial for improving drug efficacy and clinical outcomes of patients with cancer. S100 proteins belong to a family of calcium-binding proteins and have various functions in tumor development. Increasing evidence demonstrates that the dysregulation of various S100 proteins contributes to the development of drug resistance in tumors, providing a basis for the development of predictive and prognostic biomarkers in cancer. Therefore, a combination of biological inhibitors or sensitizers of dysregulated S100 proteins could enhance therapeutic responses. In this review, we provide a detailed overview of the mechanisms by which S100 family members influence resistance of tumors to cancer treatment, with a focus on the development of effective strategies for overcoming MDR.
Collapse
Affiliation(s)
- Xin Hua
- Southeast University Medical College, Nanjing, 210009, China.
| | - Hongming Zhang
- Department of Respiratory Medicine, Yancheng Third People's Hospital, Southeast University Medical College, Yancheng, 224000, China.
| | - Jinfang Jia
- Southeast University Medical College, Nanjing, 210009, China.
| | - Shanshan Chen
- Southeast University Medical College, Nanjing, 210009, China.
| | - Yue Sun
- Southeast University Medical College, Nanjing, 210009, China.
| | - Xiaoli Zhu
- Southeast University Medical College, Nanjing, 210009, China; Department of Respiratory Medicine, Zhongda Hospital of Southeast University Medical College, Nanjing, 210009, China.
| |
Collapse
|
8
|
Simon MA, Ecsédi P, Kovács GM, Póti ÁL, Reményi A, Kardos J, Gógl G, Nyitray L. High-throughput competitive fluorescence polarization assay reveals functional redundancy in the S100 protein family. FEBS J 2020; 287:2834-2846. [PMID: 31837246 DOI: 10.1111/febs.15175] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/02/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022]
Abstract
The calcium-binding, vertebrate-specific S100 protein family consists of 20 paralogs in humans (referred as the S100ome), with several clinically important members. To explore their protein-protein interactions (PPIs) quantitatively, we have chosen an unbiased, high-throughput, competitive fluorescence polarization (FP) assay that revealed a partial functional redundancy when the complete S100ome (n = 20) was tested against numerous model partners (n = 13). Based on their specificity, the S100ome can be grouped into two distinct classes: promiscuous and orphan. In the first group, members bound to several ligands (> 4-5) with comparable high affinity, while in the second one, the paralogs bound only one partner weakly, or no ligand was identified. Our results demonstrate that FP assays are highly suitable for quantitative interaction profiling of selected protein families. Moreover, we provide evidence that PPI-based phenotypic characterization can complement or even exceed the information obtained from the sequence-based phylogenetic analysis of the S100ome, an evolutionary young protein family.
Collapse
Affiliation(s)
- Márton A Simon
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Péter Ecsédi
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gábor M Kovács
- Department of Plant Anatomy, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ádám L Póti
- Institute of Organic Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Attila Reményi
- Institute of Organic Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - József Kardos
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gergő Gógl
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Equipe Labellisee Ligue 2015, Department of Integrated Structural Biology, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Universite de Strasbourg, Illkirch, France
| | - László Nyitray
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|