1
|
Díaz Casas A, Cordoba JJ, Ferrer BJ, Balakrishnan S, Wurm JE, Pastrana‐Ríos B, Chazin WJ. Binding by calmodulin is coupled to transient unfolding of the third FF domain of Prp40A. Protein Sci 2023; 32:e4606. [PMID: 36810829 PMCID: PMC10022492 DOI: 10.1002/pro.4606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
Human pre-mRNA processing protein 40 homolog A (hPrp40A) is a splicing factor that interacts with the Huntington's disease protein huntingtin (Htt). Evidence has accumulated that both Htt and hPrp40A are modulated by the intracellular Ca2+ sensor calmodulin (CaM). Here we report characterization of the interaction of human CM with the third FF domain (FF3 ) of hPrp40A using calorimetric, fluorescence and structural approaches. Homology modeling, differential scanning calorimetry and small angle X-ray scattering (SAXS) data show FF3 forms a folded globular domain. CaM was found to bind FF3 in a Ca2+ -dependent manner with a 1:1 stoichiometry and a dissociation constant (Kd ) of 25 ± 3 μM at 25°C. NMR studies showed that both domains of CaM are engaged in binding and SAXS analysis of the FF3 -CaM complex revealed CaM occupies an extended configuration. Analysis of the FF3 sequence showed that the anchors for CaM binding must be buried in its hydrophobic core, suggesting that binding to CaM requires unfolding of FF3 . Trp anchors were proposed based on sequence analysis and confirmed by intrinsic Trp fluorescence of FF3 upon binding of CaM and substantial reductions in affinity for Trp-Ala FF3 mutants. The consensus model of the complex showed that binding to CaM binding occurs to an extended, non-globular state of the FF3 , consistent with coupling to transient unfolding of the domain. The implications of these results are discussed in the context of the complex interplay of Ca2+ signaling and Ca2+ sensor proteins in modulating Prp40A-Htt function.
Collapse
Affiliation(s)
- A. Díaz Casas
- Department of BiochemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Present address:
Department of Natural SciencesPontifical Catholic University of Puerto RicoPoncePuerto RicoUSA
| | - J. J. Cordoba
- Department of BiochemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Chemical and Physical Biology Graduate ProgramVanderbilt UniversityNashvilleTennesseeUSA
| | - B. J. Ferrer
- Department of BiochemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Chemical and Physical Biology Graduate ProgramVanderbilt UniversityNashvilleTennesseeUSA
| | - S. Balakrishnan
- Department of BiochemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - J. E. Wurm
- Chemical and Physical Biology Graduate ProgramVanderbilt UniversityNashvilleTennesseeUSA
| | - B. Pastrana‐Ríos
- Department of ChemistryUniversity of Puerto Rico, Mayagüez CampusMayagüezPuerto RicoUSA
| | - W. J. Chazin
- Department of BiochemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Chemical and Physical Biology Graduate ProgramVanderbilt UniversityNashvilleTennesseeUSA
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
2
|
Cellai I, Comeglio P, Filippi S, Martinelli S, Villanelli F, Amore F, Rapizzi E, Maseroli E, Cipriani S, Raddi C, Guarnieri G, Sarchielli E, Danza G, Morelli A, Rastrelli G, Maggi M, Vignozzi L. The regulatory effect of sex steroids on the RhoA/ROCK pathway in the rat distal vagina. J Sex Med 2023; 20:1-13. [PMID: 36897236 DOI: 10.1093/jsxmed/qdac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/18/2022] [Accepted: 09/21/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Sex steroids have been demonstrated as important modulators of vaginal function. The RhoA/ROCK calcium-sensitizing pathway plays a role in genital smooth muscle contractile mechanism, but its regulation has never been elucidated. AIM This study investigated the sex steroid regulation of the vaginal smooth muscle RhoA/ROCK pathway using a validated animal model. METHODS Ovariectomized (OVX) Sprague-Dawley rats were treated with 17β-estradiol (E2), testosterone (T), and T with letrozole (T + L) and compared with intact animals. Contractility studies were performed to test the effect of the ROCK inhibitor Y-27632 and the nitric oxide (NO) synthase inhibitor L-NAME. In vaginal tissues, ROCK1 immunolocalization was investigated; mRNA expression was analyzed by semiquantitative reverse transcriptase-polymerase chain reaction; and RhoA membrane translocation was evaluated by Western blot. Finally, rat vaginal smooth muscle cells (rvSMCs) were isolated from the distal vagina of intact and OVX animals, and quantification of the RhoA inhibitory protein RhoGDI was performed after stimulation with NO donor sodium nitroprusside, with or without administration of the soluble guanylate cyclase inhibitor ODQ or PRKG1 inhibitor KT5823. OUTCOMES Androgens are critical in inhibiting the RhoA/ROCK pathway of the smooth muscle compartment in the distal vagina. RESULTS ROCK1 was immunolocalized in the smooth muscle bundles and blood vessel wall of the vagina, with weak positivity detected in the epithelium. Y-27632 induced a dose-dependent relaxation of noradrenaline precontracted vaginal strips, decreased by OVX and restored by E2, while T and T + L decreased it below the OVX level. In Western blot analysis, when compared with control, OVX significantly induced RhoA activation, as revealed by its membrane translocation, with T reverting it at a level significantly lower than in controls. This effect was not exerted by E2. Abolishing NO formation via L-NAME increased Y-27632 responsiveness in the OVX + T group; L-NAME had partial effects in controls while not modulating Y-27632 responsiveness in the OVX and OVX + E2 groups. Finally, stimulation of rvSMCs from control animals with sodium nitroprusside significantly increased RhoGDI protein expression, counteracted by ODQ and partially by KT5823 incubation; no effect was observed in rvSMCs from OVX rats. CLINICAL IMPLICATIONS Androgens, by inhibiting the RhoA/ROCK pathway, could positively contribute to vaginal smooth muscle relaxation, favoring sexual intercourse. STRENGTHS AND LIMITATIONS This study describes the role of androgens in maintaining vaginal well-being. The absence of a sham-operated animal group and the use of the only intact animal as control represented a limitation to the study.
Collapse
Affiliation(s)
- Ilaria Cellai
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence 50139, Italy
| | - Paolo Comeglio
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence 50139, Italy
| | - Sandra Filippi
- Interdepartmental Laboratory of Functional and Cellular Pharmacology of Reproduction, Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence 50139, Italy
| | - Serena Martinelli
- Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence 50139, Italy
| | - Fabio Villanelli
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence 50139, Italy
| | - Francesca Amore
- Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence 50139, Italy
| | - Elena Rapizzi
- Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence 50139, Italy
| | - Elisa Maseroli
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence 50139, Italy
| | - Sarah Cipriani
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence 50139, Italy
| | - Chiara Raddi
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence 50139, Italy
| | - Giulia Guarnieri
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Erica Sarchielli
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Giovanna Danza
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence 50139, Italy
| | - Annamaria Morelli
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence 50139, Italy
| | - Giulia Rastrelli
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence 50139, Italy
| | - Mario Maggi
- Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence 50139, Italy.,INBB (Istituto Nazionale Biostrutture e Biosistemi), Rome, Italy
| | - Linda Vignozzi
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence 50139, Italy.,INBB (Istituto Nazionale Biostrutture e Biosistemi), Rome, Italy
| |
Collapse
|
3
|
Upregulation of miR-335-5p Contributes to Right Ventricular Remodeling via Calumenin in Pulmonary Arterial Hypertension. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9294148. [PMID: 36246958 PMCID: PMC9557250 DOI: 10.1155/2022/9294148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/08/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022]
Abstract
Right ventricular (RV) failure determines the prognosis in pulmonary arterial hypertension (PAH), but the underlying mechanism is still unclear. Growing evidence has shown that microRNAs participate in RV remodeling. This study is undertaken to explore the role of miR-335-5p in regulating RV remodeling induced by PAH. Two PAH models were used in the study, including the monocrotaline rat model and hypoxia/su5416 mouse model. miRNA sequencing and RT-qPCR validation identified that miR-335-5p was elevated in the RV of PAH rats. In vitro, miR-335-5p expression was increased after angiotensin II treatment, and miR-335-5p inhibition relieved angiotensin II-induced cardiomyocyte hypertrophy. The luciferase reporter assay showed that calumenin was a target gene for miR-335-5p. Pretreatment with miR-335-5p inhibitors could rescue calumenin downregulation induced by angiotensin II in H9C2 cells. Moreover, intracellular Ca2+ concentration and apoptosis were increased after angiotensin II treatment, and miR-335-5p inhibition decreased intracellular Ca2+ accumulation and apoptosis. Finally, in vivo miR-335-5p downregulation (antagomir miR-335-5p) attenuated RV remodeling and rescued calumenin downregulation under conditions of hypoxia/su5416 exposure. Our work highlights the role of miR-335-5p and calumenin in RV remodeling and may lead to the development of novel therapeutic strategies for right heart failure.
Collapse
|