1
|
Bin JM, Suminaite D, Benito-Kwiecinski SK, Kegel L, Rubio-Brotons M, Early JJ, Soong D, Livesey MR, Poole RJ, Lyons DA. Importin 13-dependent axon diameter growth regulates conduction speeds along myelinated CNS axons. Nat Commun 2024; 15:1790. [PMID: 38413580 PMCID: PMC10899189 DOI: 10.1038/s41467-024-45908-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Axon diameter influences the conduction properties of myelinated axons, both directly, and indirectly through effects on myelin. However, we have limited understanding of mechanisms controlling axon diameter growth in the central nervous system, preventing systematic dissection of how manipulating diameter affects myelination and conduction along individual axons. Here we establish zebrafish to study axon diameter. We find that importin 13b is required for axon diameter growth, but does not affect cell body size or axon length. Using neuron-specific ipo13b mutants, we assess how reduced axon diameter affects myelination and conduction, and find no changes to myelin thickness, precision of action potential propagation, or ability to sustain high frequency firing. However, increases in conduction speed that occur along single myelinated axons with development are tightly linked to their growth in diameter. This suggests that axon diameter growth is a major driver of increases in conduction speeds along myelinated axons over time.
Collapse
Affiliation(s)
- Jenea M Bin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.
| | - Daumante Suminaite
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | | | - Linde Kegel
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Maria Rubio-Brotons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Jason J Early
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Daniel Soong
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Matthew R Livesey
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Richard J Poole
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - David A Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
2
|
Neely SA, Lyons DA. Insights Into Central Nervous System Glial Cell Formation and Function From Zebrafish. Front Cell Dev Biol 2021; 9:754606. [PMID: 34912801 PMCID: PMC8666443 DOI: 10.3389/fcell.2021.754606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/05/2021] [Indexed: 12/23/2022] Open
Abstract
The term glia describes a heterogenous collection of distinct cell types that make up a large proportion of our nervous system. Although once considered the glue of the nervous system, the study of glial cells has evolved significantly in recent years, with a large body of literature now highlighting their complex and diverse roles in development and throughout life. This progress is due, in part, to advances in animal models in which the molecular and cellular mechanisms of glial cell development and function as well as neuron-glial cell interactions can be directly studied in vivo in real time, in intact neural circuits. In this review we highlight the instrumental role that zebrafish have played as a vertebrate model system for the study of glial cells, and discuss how the experimental advantages of the zebrafish lend themselves to investigate glial cell interactions and diversity. We focus in particular on recent studies that have provided insight into the formation and function of the major glial cell types in the central nervous system in zebrafish.
Collapse
Affiliation(s)
- Sarah A. Neely
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - David A. Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
De Oliveira J, Chadili E, Turies C, Brion F, Cousin X, Hinfray N. A comparison of behavioral and reproductive parameters between wild-type, transgenic and mutant zebrafish: Could they all be considered the same "zebrafish" for reglementary assays on endocrine disruption? Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108879. [PMID: 32877737 DOI: 10.1016/j.cbpc.2020.108879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022]
Abstract
Transgenic zebrafish models are efficiently used to study the effects of endocrine disrupting chemicals (EDC); thereby informing on their mechanisms of action. However, given the reported differences between zebrafish strains at the genetical, physiological and behavioral levels; care should be taken before using these transgenic models for EDC testing. In the present study, we undertook a set of experiments in different transgenic and/or mutant zebrafish strains of interest for EDC testing: casper, cyp19a1a-eGFP, cyp19a1a-eGFP-casper, cyp11c1-eGFP, cyp11c1-eGFP-casper. Some behavioral traits, and some biochemical and reproductive physiological endpoints commonly used in EDC testing were assessed and compared to those obtained in WT AB zebrafish to ensure that transgene insertion and/or mutations do not negatively modify basal reproductive physiology or behavior of the fish. Behavioral traits considered as anxiety and sociality have been monitored. Sociality was evaluated by monitoring the time spent near congeners in a shuttle box while anxiety was evaluated using the Novel tank diving test. No critical difference was observed between strains for either sociality or anxiety level. Concerning reproduction, no significant difference in the number of eggs laid per female, in the viability of eggs or in the female circulating VTG concentrations was noted between the 5 transgenic/mutants and the WT AB zebrafish studied. In summary, the transgene insertion and the mutations had no influence on the endpoints measured in basal conditions. These results were a prerequisite to the use of these transgenic/mutant models for EDC testing. Next step will be to determine the sensitivity of these biological models to chemical exposure to accurately validate their use in existing fish assays for EDC testing.
Collapse
Affiliation(s)
- Julie De Oliveira
- INERIS, Unité d'écotoxicologie in vitro et in vivo, UMR I-02 SEBIO, Verneuil-en-Halatte, France
| | - Edith Chadili
- INERIS, Unité d'écotoxicologie in vitro et in vivo, UMR I-02 SEBIO, Verneuil-en-Halatte, France
| | - Cyril Turies
- INERIS, Unité d'écotoxicologie in vitro et in vivo, UMR I-02 SEBIO, Verneuil-en-Halatte, France
| | - François Brion
- INERIS, Unité d'écotoxicologie in vitro et in vivo, UMR I-02 SEBIO, Verneuil-en-Halatte, France
| | - Xavier Cousin
- MARBEC Univ. Montpellier, CNRS, Ifremer, IRD, Palavas-les-Flots, France; Univ. Paris-Saclay, AgroParisTech, INRAE, GABI, France
| | - Nathalie Hinfray
- INERIS, Unité d'écotoxicologie in vitro et in vivo, UMR I-02 SEBIO, Verneuil-en-Halatte, France.
| |
Collapse
|
4
|
Marshall-Phelps KL, Kegel L, Baraban M, Ruhwedel T, Almeida RG, Rubio-Brotons M, Klingseisen A, Benito-Kwiecinski SK, Early JJ, Bin JM, Suminaite D, Livesey MR, Möbius W, Poole RJ, Lyons DA. Neuronal activity disrupts myelinated axon integrity in the absence of NKCC1b. J Cell Biol 2020; 219:e201909022. [PMID: 32364583 PMCID: PMC7337504 DOI: 10.1083/jcb.201909022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/09/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Through a genetic screen in zebrafish, we identified a mutant with disruption to myelin in both the CNS and PNS caused by a mutation in a previously uncharacterized gene, slc12a2b, predicted to encode a Na+, K+, and Cl- (NKCC) cotransporter, NKCC1b. slc12a2b/NKCC1b mutants exhibited a severe and progressive pathology in the PNS, characterized by dysmyelination and swelling of the periaxonal space at the axon-myelin interface. Cell-type-specific loss of slc12a2b/NKCC1b in either neurons or myelinating Schwann cells recapitulated these pathologies. Given that NKCC1 is critical for ion homeostasis, we asked whether the disruption to myelinated axons in slc12a2b/NKCC1b mutants is affected by neuronal activity. Strikingly, we found that blocking neuronal activity completely prevented and could even rescue the pathology in slc12a2b/NKCC1b mutants. Together, our data indicate that NKCC1b is required to maintain neuronal activity-related solute homeostasis at the axon-myelin interface, and the integrity of myelinated axons.
Collapse
Affiliation(s)
| | - Linde Kegel
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Marion Baraban
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Torben Ruhwedel
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Rafael G. Almeida
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Anna Klingseisen
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Jason J. Early
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Jenea M. Bin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Daumante Suminaite
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Matthew R. Livesey
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Richard J. Poole
- Department of Cell and Developmental Biology, University College London, London, UK
| | - David A. Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Klingseisen A, Ristoiu AM, Kegel L, Sherman DL, Rubio-Brotons M, Almeida RG, Koudelka S, Benito-Kwiecinski SK, Poole RJ, Brophy PJ, Lyons DA. Oligodendrocyte Neurofascin Independently Regulates Both Myelin Targeting and Sheath Growth in the CNS. Dev Cell 2019; 51:730-744.e6. [PMID: 31761670 PMCID: PMC6912162 DOI: 10.1016/j.devcel.2019.10.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/10/2019] [Accepted: 10/17/2019] [Indexed: 01/06/2023]
Abstract
Selection of the correct targets for myelination and regulation of myelin sheath growth are essential for central nervous system (CNS) formation and function. Through a genetic screen in zebrafish and complementary analyses in mice, we find that loss of oligodendrocyte Neurofascin leads to mistargeting of myelin to cell bodies, without affecting targeting to axons. In addition, loss of Neurofascin reduces CNS myelination by impairing myelin sheath growth. Time-lapse imaging reveals that the distinct myelinating processes of individual oligodendrocytes can engage in target selection and sheath growth at the same time and that Neurofascin concomitantly regulates targeting and growth. Disruption to Caspr, the neuronal binding partner of oligodendrocyte Neurofascin, also impairs myelin sheath growth, likely reflecting its association in an adhesion complex at the axon-glial interface with Neurofascin. Caspr does not, however, affect myelin targeting, further indicating that Neurofascin independently regulates distinct aspects of CNS myelination by individual oligodendrocytes in vivo. Single oligodendrocytes coordinate myelin targeting and growth at the same time Oligodendrocyte Neurofascin prevents myelination of cell bodies Oligodendrocyte Neurofascin promotes myelin sheath growth The neuronal binding partner of Neurofascin, Caspr, promotes myelin sheath growth
Collapse
Affiliation(s)
- Anna Klingseisen
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Ana-Maria Ristoiu
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Linde Kegel
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Diane L Sherman
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Maria Rubio-Brotons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Rafael G Almeida
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Sigrid Koudelka
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | | | - Richard J Poole
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Peter J Brophy
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - David A Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
| |
Collapse
|