1
|
Terrones M, de Beeck KO, Van Camp G, Vandeweyer G. Pre-clinical modelling of ROS1+ non-small cell lung cancer. Lung Cancer 2023; 180:107192. [PMID: 37068393 DOI: 10.1016/j.lungcan.2023.107192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/19/2023]
Abstract
Non-small cell lung cancer (NSCLC) is a heterogeneous group of diseases which accounts for 80% of newly diagnosed lung cancers. In the previous decade, a new molecular subset of NSCLC patients (around 2%) harboring rearrangements of the c-ros oncogene 1 was defined. ROS1+ NSCLC is typically diagnosed in young, nonsmoker individuals presenting an adenocarcinoma histology. Patients can benefit from tyrosine kinase inhibitors (TKIs) such as crizotinib and entrectinib, compounds initially approved to treat ALK-, MET- or NTRK- rearranged malignancies respectively. Given the low prevalence of ROS1-rearranged tumors, the use of TKIs was authorized based on pre-clinical evidence using limited experimental models, followed by basket clinical trials. After initiating targeted therapy, disease relapse is reported in approximately 50% of cases as a result of the appearance of resistance mechanisms. The restricted availability of TKIs active against resistance events critically reduces the overall survival. In this review we discuss the pre-clinical ROS1+ NSCLC models developed up to date, highlighting their strengths and limitations with respect to the unmet clinical needs. By combining gene-editing tools and novel cell culture approaches, newly developed pre-clinical models will enhance the development of next-generation tyrosine kinase inhibitors that overcome resistant tumor cell subpopulations.
Collapse
Affiliation(s)
- Marc Terrones
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43/6, 2650 Edegem, Belgium; Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Ken Op de Beeck
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43/6, 2650 Edegem, Belgium; Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43/6, 2650 Edegem, Belgium; Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Geert Vandeweyer
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43/6, 2650 Edegem, Belgium
| |
Collapse
|
2
|
Pelosi AC, Fernandes AMAP, Maciel LF, Silva AAR, Mendes GC, Bueno LF, Silva LMF, Bredariol RF, Santana MG, Porcari AM, Priolli DG. Liquid chromatography coupled to high-resolution mass spectrometry metabolomics: A useful tool for investigating tumor secretome based on a three-dimensional co-culture model. PLoS One 2022; 17:e0274623. [PMID: 36129929 PMCID: PMC9491614 DOI: 10.1371/journal.pone.0274623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/31/2022] [Indexed: 01/01/2023] Open
Abstract
Three-dimensional (3D) cell culture technologies, which more closely mimic the complex microenvironment of tissue, are being increasingly evaluated as a tool for the preclinical screening of clinically promising new molecules, and studying of tissue metabolism. Studies of metabolites released into the extracellular space (secretome) allow understanding the metabolic dynamics of tissues and changes caused by therapeutic interventions. Although quite advanced in the field of proteomics, studies on the secretome of low molecular weight metabolites (< 1500 Da) are still very scarce. We present an untargeted metabolomic protocol based on the hybrid technique of liquid chromatography coupled with high-resolution mass spectrometry for the analysis of low-molecular-weight metabolites released into the culture medium by 3D cultures and co-culture (secretome model). For that we analyzed HT-29 human colon carcinoma cells and 3T3-L1 preadipocytes in 3D-monoculture and 3D-co-culture. The putative identification of the metabolites indicated a sort of metabolites, among them arachidonic acid, glyceric acid, docosapentaenoic acid and beta-Alanine which are related to cancer and obesity. This protocol represents a possibility to list metabolites released in the extracellular environment in a comprehensive and untargeted manner, opening the way for the generation of metabolic hypotheses that will certainly contribute to the understanding of tissue metabolism, tissue-tissue interactions, and metabolic responses to the most varied interventions. Moreover, it brings the potential to determine novel pathways and accurately identify biomarkers in cancer and other diseases. The metabolites indicated in our study have a close relationship with the tumor microenvironment in accordance with the literature review.
Collapse
Affiliation(s)
- Andrea C. Pelosi
- Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Anna Maria A. P. Fernandes
- Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, São Paulo, Brazil
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Leonardo F. Maciel
- Multidisciplinary Laboratory, Medical School, Sao Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Alex A. R. Silva
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Giulia C. Mendes
- Multidisciplinary Laboratory, Medical School, Sao Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Luísa F. Bueno
- Multidisciplinary Laboratory, Medical School, Sao Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Lívia Maria F. Silva
- Multidisciplinary Laboratory, Medical School, Sao Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Rafael F. Bredariol
- Multidisciplinary Laboratory, Medical School, Sao Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Maycon G. Santana
- Multiprofessional Nursing Residency Program in Oncology, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Andreia M. Porcari
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Denise G. Priolli
- Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
3
|
Xie H, Appelt JW, Jenkins RW. Going with the Flow: Modeling the Tumor Microenvironment Using Microfluidic Technology. Cancers (Basel) 2021; 13:cancers13236052. [PMID: 34885161 PMCID: PMC8656483 DOI: 10.3390/cancers13236052] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The clinical success of cancer immunotherapy targeting immune checkpoints (e.g., PD-1, CTLA-4) has ushered in a new era of cancer therapeutics aimed at promoting antitumor immunity in hopes of offering durable clinical responses for patients with advanced, metastatic cancer. This success has also reinvigorated interest in developing tumor model systems that recapitulate key features of antitumor immune responses to complement existing in vivo tumor models. Patient-derived tumor models have emerged in recent years to facilitate study of tumor–immune dynamics. Microfluidic technology has enabled development of microphysiologic systems (MPSs) for the evaluation of the tumor microenvironment, which have shown early promise in studying tumor–immune dynamics. Further development of microfluidic-based “tumor-on-a-chip” MPSs to study tumor–immune interactions may overcome several key challenges currently facing tumor immunology. Abstract Recent advances in cancer immunotherapy have led a paradigm shift in the treatment of multiple malignancies with renewed focus on the host immune system and tumor–immune dynamics. However, intrinsic and acquired resistance to immunotherapy limits patient benefits and wider application. Investigations into the mechanisms of response and resistance to immunotherapy have demonstrated key tumor-intrinsic and tumor-extrinsic factors. Studying complex interactions with multiple cell types is necessary to understand the mechanisms of response and resistance to cancer therapies. The lack of model systems that faithfully recapitulate key features of the tumor microenvironment (TME) remains a challenge for cancer researchers. Here, we review recent advances in TME models focusing on the use of microfluidic technology to study and model the TME, including the application of microfluidic technologies to study tumor–immune dynamics and response to cancer therapeutics. We also discuss the limitations of current systems and suggest future directions to utilize this technology to its highest potential.
Collapse
Affiliation(s)
- Hongyan Xie
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
| | - Jackson W. Appelt
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
| | - Russell W. Jenkins
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Correspondence: ; Tel.: +617-726-9372; Fax: +844-542-5959
| |
Collapse
|
4
|
Zhuang P, Chiang YH, Fernanda MS, He M. Using Spheroids as Building Blocks Towards 3D Bioprinting of Tumor Microenvironment. Int J Bioprint 2021; 7:444. [PMID: 34805601 PMCID: PMC8600307 DOI: 10.18063/ijb.v7i4.444] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer still ranks as a leading cause of mortality worldwide. Although considerable efforts have been dedicated to anticancer therapeutics, progress is still slow, partially due to the absence of robust prediction models. Multicellular tumor spheroids, as a major three-dimensional (3D) culture model exhibiting features of avascular tumors, gained great popularity in pathophysiological studies and high throughput drug screening. However, limited control over cellular and structural organization is still the key challenge in achieving in vivo like tissue microenvironment. 3D bioprinting has made great strides toward tissue/organ mimicry, due to its outstanding spatial control through combining both cells and materials, scalability, and reproducibility. Prospectively, harnessing the power from both 3D bioprinting and multicellular spheroids would likely generate more faithful tumor models and advance our understanding on the mechanism of tumor progression. In this review, the emerging concept on using spheroids as a building block in 3D bioprinting for tumor modeling is illustrated. We begin by describing the context of the tumor microenvironment, followed by an introduction of various methodologies for tumor spheroid formation, with their specific merits and drawbacks. Thereafter, we present an overview of existing 3D printed tumor models using spheroids as a focus. We provide a compilation of the contemporary literature sources and summarize the overall advancements in technology and possibilities of using spheroids as building blocks in 3D printed tissue modeling, with a particular emphasis on tumor models. Future outlooks about the wonderous advancements of integrated 3D spheroidal printing conclude this review.
Collapse
Affiliation(s)
- Pei Zhuang
- Department of Pharmaceutics, University of Florida, Gainesville, Florida, 32610, USA
| | - Yi-Hua Chiang
- Department of Pharmaceutics, University of Florida, Gainesville, Florida, 32610, USA
| | | | - Mei He
- Department of Pharmaceutics, University of Florida, Gainesville, Florida, 32610, USA
| |
Collapse
|
5
|
Metzger W, Rösch B, Sossong D, Bubel M, Pohlemann T. Flow cytometric quantification of apoptotic and proliferating cells applying an improved method for dissociation of spheroids. Cell Biol Int 2021; 45:1633-1643. [PMID: 33913594 DOI: 10.1002/cbin.11618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/30/2021] [Accepted: 04/18/2021] [Indexed: 01/31/2023]
Abstract
Spheroids are a promising tool for many cell culture applications, but their microscopic analysis is limited. Flow cytometry on a single cell basis, which requires a gentle but also efficient dissociation of spheroids, could be an alternative analysis. Mono-culture and coculture spheroids consisting of human fibroblasts and human endothelial cells were generated by the liquid overlay technique and were dissociated using AccuMax as a dissociation agent combined with gentle mechanical forces. This study aimed to quantify the number of apoptotic and proliferative cells. We were able to dissociate spheroids of differing size, age, and cellular composition in a single-step dissociation protocol within 10 min. The number of single cells was higher than 95% and in most cases, the viability of the cells after dissociation was higher than 85%. Coculture spheroids exhibited a higher sensitivity as shown by lower viability, higher amount of cellular debris, and a higher amount of apoptotic cells. Considerable expression of the proliferation marker Ki67 could only be seen in 1-day-old spheroids but was already downregulated on Day 3. In summary, our dissociation protocol enabled a fast and gentle dissociation of spheroids for the subsequent flow cytometric analysis. The chosen cell type had a strong influence on cell viability and apoptosis. Initially high rates of proliferative cells decreased rapidly and reached values of healthy tissue 3 days after generation of the spheroids. In conclusion, the flow cytometry of dissociated spheroids could be a promising analytical tool, which could be ideally combined with microscopic techniques.
Collapse
Affiliation(s)
- Wolfgang Metzger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Barbara Rösch
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Daniela Sossong
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Monika Bubel
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Tim Pohlemann
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
6
|
Sakalem ME, De Sibio MT, da Costa FADS, de Oliveira M. Historical evolution of spheroids and organoids, and possibilities of use in life sciences and medicine. Biotechnol J 2021; 16:e2000463. [PMID: 33491924 DOI: 10.1002/biot.202000463] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND An impressive percentage of biomedical advances were achieved through animal research and cell culture investigations. For drug testing and disease researches, both animal models and preclinical trials with cell cultures are extremely important, but present some limitations, such as ethical concern and inability of representing complex tissues and organs. 3D cell cultures arise providing a more realistic in vitro representation of tissues and organs. Environment and cell type in 3D cultures can represent in vivo conditions and thus provide accurate data on cell-to-cell interactions, and cultivation techniques are based on a scaffold, usually hydrogel or another polymeric material, or without scaffold, such as suspended microplates, magnetic levitation, and microplates for spheroids with ultra-low fixation coating. PURPOSE AND SCOPE This review aims at presenting an updated summary of the most common 3D cell culture models available, as well as a historical background of their establishment and possible applications. SUMMARY Even though 3D culturing is incapable of replacing other current research types, they will continue to substitute some unnecessary animal experimentation, as well as complement monolayer cultures. CONCLUSION In this aspect, 3D culture emerges as a valuable alternative to the investigation of functional, biochemical, and molecular aspects of human pathologies.
Collapse
Affiliation(s)
| | - Maria Teresa De Sibio
- Department of Internal Clinic, Botucatu Medicine School of the Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Felipe Allan da Silva da Costa
- Department of Bioprocesses and Biotechnology, School of Agricultural Sciences of the Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Miriane de Oliveira
- Department of Internal Clinic, Botucatu Medicine School of the Sao Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
7
|
Shafran Y, Deutsch M, Afrimzon E, Ravid-Hermesh O, Sobolev M, Bar-On-Eizig Z, Shainberg A, Zurgil N. Co-culture hydrogel micro-chamber array-based plate for anti-tumor drug development at single-element resolution. Toxicol In Vitro 2020; 71:105067. [PMID: 33301902 DOI: 10.1016/j.tiv.2020.105067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/19/2020] [Accepted: 12/06/2020] [Indexed: 12/14/2022]
Abstract
In response to the need for reliable cellular models that reflect complex tumor microenvironmental properties, and enable more precise testing of anti-cancer therapeutics effects on humans, a co-culture platform for in-vitro model that enhances the physiology of breast cancer (BC) microenvironment is presented. A six well imaging plate wherein each macro-well contains several separate compartments was designed. Three-dimensional (3D) cancer spheroids are generated and cultured in the inner compartment which is embossed with an array of nano-liter micro-chambers made of hydrogel. Stromal cells are cultured in the outer chambers. The two cell types are cultured side-by-side, sharing a common space, thus enabling extra-cellular communication via secreted molecules. As proof of concept, a model of BC tumor microenvironment was recapitulated by co-cultivating 3D MCF7 spheroids in the presence of tumor-associated macrophages (TAMs). The presence of TAMs induced an aggressive phenotype by promoting spheroid growth, enhancing survivin expression levels and enabling invasive behavior. Moreover, TAMs influenced the response of BC spheroids to cytotoxic treatment as well as hormonal drug therapy, and enhanced the effects of nitric oxide donor. The platform enables time-lapse imaging and treatment without losing spatial location of the measured spheroids, thereby allowing measurements and analysis at individual-object resolution in an easy and efficient manner.
Collapse
Affiliation(s)
- Yana Shafran
- The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and Technology of the Cellome, Physics Department, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Mordechai Deutsch
- The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and Technology of the Cellome, Physics Department, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Elena Afrimzon
- The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and Technology of the Cellome, Physics Department, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Orit Ravid-Hermesh
- The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and Technology of the Cellome, Physics Department, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Maria Sobolev
- The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and Technology of the Cellome, Physics Department, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Zehavit Bar-On-Eizig
- The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and Technology of the Cellome, Physics Department, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Asher Shainberg
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Naomi Zurgil
- The Biophysical Interdisciplinary Jerome Schottenstein Center for the Research and Technology of the Cellome, Physics Department, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
8
|
Doctor A, Seifert V, Ullrich M, Hauser S, Pietzsch J. Three-Dimensional Cell Culture Systems in Radiopharmaceutical Cancer Research. Cancers (Basel) 2020; 12:cancers12102765. [PMID: 32993034 PMCID: PMC7600608 DOI: 10.3390/cancers12102765] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
In preclinical cancer research, three-dimensional (3D) cell culture systems such as multicellular spheroids and organoids are becoming increasingly important. They provide valuable information before studies on animal models begin and, in some cases, are even suitable for reducing or replacing animal experiments. Furthermore, they recapitulate microtumors, metastases, and the tumor microenvironment much better than monolayer culture systems could. Three-dimensional models show higher structural complexity and diverse cell interactions while reflecting (patho)physiological phenomena such as oxygen and nutrient gradients in the course of their growth or development. These interactions and properties are of great importance for understanding the pathophysiological importance of stromal cells and the extracellular matrix for tumor progression, treatment response, or resistance mechanisms of solid tumors. Special emphasis is placed on co-cultivation with tumor-associated cells, which further increases the predictive value of 3D models, e.g., for drug development. The aim of this overview is to shed light on selected 3D models and their advantages and disadvantages, especially from the radiopharmacist's point of view with focus on the suitability of 3D models for the radiopharmacological characterization of novel radiotracers and radiotherapeutics. Special attention is paid to pancreatic ductal adenocarcinoma (PDAC) as a predestined target for the development of new radionuclide-based theranostics.
Collapse
Affiliation(s)
- Alina Doctor
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Verena Seifert
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Martin Ullrich
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
- Correspondence: ; Tel.: +49-351-260-2622
| |
Collapse
|
9
|
Su T, Yang B, Gao T, Liu T, Li J. Polymer nanoparticle-assisted chemotherapy of pancreatic cancer. Ther Adv Med Oncol 2020; 12:1758835920915978. [PMID: 32426046 PMCID: PMC7222269 DOI: 10.1177/1758835920915978] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer is a lethal disease characterized by highly dense stroma fibrosis. Only 15-20% of patients with pancreatic cancer have resectable tumors, and only around 20% of them survive to 5 years. Traditional cancer treatments have little effect on their prognosis, and successful surgical resection combined with effective perioperative therapy is the main method for maximizing long-term survival. For this reason, chemotherapy is an adjunct treatment for resectable cancer and is the main therapy for incurable pancreatic cancer, including metastatic pancreatic adenocarcinoma. However, there are various side effects of chemotherapeutic medicine and low drug penetration because the complex tumor microenvironment limits the application of chemotherapy. As a novel strategy, polymer nanoparticles make it possible to target the tumor microenvironment, release cytotoxic agents through various responsive reactions, and thus overcome the treatment barrier. As drug carriers, polymer nanoparticles show marked advantages, such as increased drug delivery and efficiency, controlled drug release, decreased side effects, prolonged half-life, and evasion of immunogenic blockade. In this review, we discuss the factors that cause chemotherapy obstacles in pancreatic cancer, and introduce the application of polymer nanoparticles to treat pancreatic cancer.
Collapse
Affiliation(s)
- Tianqi Su
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Bo Yang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Tianren Gao
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Tongjun Liu
- Department of General Surgery, Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| | - Jiannan Li
- Department of General Surgery, Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| |
Collapse
|