1
|
Sobočan N, Himelreich-Perić M, Katušić-Bojanac A, Krasić J, Sinčić N, Majić Ž, Jurić-Lekić G, Šerman L, Marić A, Ježek D, Bulić-Jakuš F. Extended Prophylactic Effect of N-tert-Butyl-α-phenylnitron against Oxidative/Nitrosative Damage Caused by the DNA-Hypomethylating Drug 5-Azacytidine in the Rat Placenta. Int J Mol Sci 2022; 23:603. [PMID: 35054786 PMCID: PMC8775603 DOI: 10.3390/ijms23020603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/10/2022] Open
Abstract
Antioxidant N-tert-Butyl-α-phenylnitron (PBN) partly protected embryos from the negative effects of a DNA demethylating drug 5-azacytidine during pregnancy. Our aim was to investigate PBN's impact on the placenta. Fischer rat dams were treated on gestation days (GD) 12 and 13 by PBN (40 mg/kg), followed by 5azaC (5 mg/kg) after one hour. Global methylation was assessed by pyrosequencing. Numerical density was calculated from immunohistochemical expression in single cells for proliferating (PCNA), oxidative (oxoguanosine) and nitrosative (nitrotyrosine) activity. Results were compared with the PBN-treated and control rats. PBN-pretreatment significantly increased placental weight at GD15 and GD20, diminished by 5azaC, and diminished apoptosis in GD 20 placentas caused by 5azaC. Oxoguanosine expression in placentas of 5azaC-treated dams was especially high in the placental labyrinth on GD 15, while PBN-pretreatment lowered its expression on GD 15 and GD 20 in both the labyrinth and basal layer. 5azaC enhanced nitrotyrosine level in the labyrinth of both gestational stages, while PBN-pretreatment lowered it. We conclude that PBN exerted its prophylactic activity against DNA hypomethylating agent 5azaC in the placenta through free radical scavenging, especially in the labyrinthine part of the placenta until the last day of pregnancy.
Collapse
Affiliation(s)
- Nikola Sobočan
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (N.S.); (A.K.-B.); (J.K.); (N.S.); (G.J.-L.); (L.Š.); (D.J.); (F.B.-J.)
- Department of Gastroenterology, University Hospital Merkur, 10000 Zagreb, Croatia
| | - Marta Himelreich-Perić
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (N.S.); (A.K.-B.); (J.K.); (N.S.); (G.J.-L.); (L.Š.); (D.J.); (F.B.-J.)
- Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Ana Katušić-Bojanac
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (N.S.); (A.K.-B.); (J.K.); (N.S.); (G.J.-L.); (L.Š.); (D.J.); (F.B.-J.)
- Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Jure Krasić
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (N.S.); (A.K.-B.); (J.K.); (N.S.); (G.J.-L.); (L.Š.); (D.J.); (F.B.-J.)
- Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Nino Sinčić
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (N.S.); (A.K.-B.); (J.K.); (N.S.); (G.J.-L.); (L.Š.); (D.J.); (F.B.-J.)
- Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Željka Majić
- Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Gordana Jurić-Lekić
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (N.S.); (A.K.-B.); (J.K.); (N.S.); (G.J.-L.); (L.Š.); (D.J.); (F.B.-J.)
- Department of Histology and Embryology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ljiljana Šerman
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (N.S.); (A.K.-B.); (J.K.); (N.S.); (G.J.-L.); (L.Š.); (D.J.); (F.B.-J.)
- Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Andreja Marić
- Department of Internal Medicine, County Hospital Čakovec, 40000 Čakovec, Croatia;
| | - Davor Ježek
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (N.S.); (A.K.-B.); (J.K.); (N.S.); (G.J.-L.); (L.Š.); (D.J.); (F.B.-J.)
- Department of Histology and Embryology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Floriana Bulić-Jakuš
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (N.S.); (A.K.-B.); (J.K.); (N.S.); (G.J.-L.); (L.Š.); (D.J.); (F.B.-J.)
- Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
2
|
Yang HC, Wu YH, Yen WC, Liu HY, Hwang TL, Stern A, Chiu DTY. The Redox Role of G6PD in Cell Growth, Cell Death, and Cancer. Cells 2019; 8:cells8091055. [PMID: 31500396 PMCID: PMC6770671 DOI: 10.3390/cells8091055] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023] Open
Abstract
The generation of reducing equivalent NADPH via glucose-6-phosphate dehydrogenase (G6PD) is critical for the maintenance of redox homeostasis and reductive biosynthesis in cells. NADPH also plays key roles in cellular processes mediated by redox signaling. Insufficient G6PD activity predisposes cells to growth retardation and demise. Severely lacking G6PD impairs embryonic development and delays organismal growth. Altered G6PD activity is associated with pathophysiology, such as autophagy, insulin resistance, infection, inflammation, as well as diabetes and hypertension. Aberrant activation of G6PD leads to enhanced cell proliferation and adaptation in many types of cancers. The present review aims to update the existing knowledge concerning G6PD and emphasizes how G6PD modulates redox signaling and affects cell survival and demise, particularly in diseases such as cancer. Exploiting G6PD as a potential drug target against cancer is also discussed.
Collapse
Affiliation(s)
- Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan.
| | - Yi-Hsuan Wu
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Wei-Chen Yen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Hui-Ya Liu
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
- Department of Anaesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Arnold Stern
- New York University School of Medicine, New York, NY, USA.
| | - Daniel Tsun-Yee Chiu
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Department of Pediatric Hematology/Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|