1
|
Maheshwari N, Jermiin LS, Cotroneo C, Gordon SV, Shields DC. Insights into the production and evolution of lantibiotics from a computational analysis of peptides associated with the lanthipeptide cyclase domain. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240491. [PMID: 39021782 PMCID: PMC11251773 DOI: 10.1098/rsos.240491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Lanthipeptides are a large group of ribosomally encoded peptides cyclized by thioether and methylene bridges, which include the lantibiotics, lanthipeptides with antimicrobial activity. There are over 100 experimentally characterized lanthipeptides, with at least 25 distinct cyclization bridging patterns. We set out to understand the evolutionary dynamics and diversity of lanthipeptides. We identified 977 peptides in 2785 bacterial genomes from short open-reading frames encoding lanthipeptide modifiable amino acids (C, S and T) that lay chromosomally adjacent to genes encoding proteins containing the cyclase domain. These appeared to be synthesized by both known and novel enzymatic combinations. Our predictor of bridging topology suggested 36 novel-predicted topologies, including a single-cysteine topology seen in 179 lanthionine or labionin containing peptides, which were enriched for histidine. Evidence that supported the relevance of the single-cysteine containing lanthipeptide precursors included the presence of the labionin motif among single cysteine peptides that clustered with labionin-associated synthetase domains, and the leader features of experimentally defined lanthipeptides that were shared with single cysteine predictions. Evolutionary rate variation among peptide subfamilies suggests that selection pressures for functional change differ among subfamilies. Lanthipeptides that have recently evolved specific novel features may represent a richer source of potential novel antimicrobials, since their target species may have had less time to evolve resistance.
Collapse
Affiliation(s)
- Nikunj Maheshwari
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Lars S. Jermiin
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland
| | - Chiara Cotroneo
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Stephen V. Gordon
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Denis C. Shields
- School of Medicine, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Chen JN, Jiang F, Wu YD. Accurate Prediction for Protein-Peptide Binding Based on High-Temperature Molecular Dynamics Simulations. J Chem Theory Comput 2022; 18:6386-6395. [PMID: 36149394 DOI: 10.1021/acs.jctc.2c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structural characterization of protein-peptide interactions is fundamental to elucidating biological processes and designing peptide drugs. Molecular dynamics (MD) simulations are extensively used to study biomolecular systems. However, simulating the protein-peptide binding process is usually quite expensive. Based on our previous studies, herein, we propose a simple and effective method to predict the binding site and pose of the peptide simultaneously using high-temperature (high-T) MD simulations with the RSFF2C force field. Thousands of binding events (nonspecific or specific) can be sampled during microseconds of high-T MD. From density-based clustering analysis, the structures of all of the 12 complexes (nine with linear peptides and three with cyclic peptides) can be successfully predicted with root-mean-square deviation (RMSD) < 2.5 Å. By directly simulating the process of the ligand binding onto the receptor, our method approaches experimental precision for the first time, significantly surpassing previous protein-peptide docking methods in terms of accuracy.
Collapse
Affiliation(s)
- Jia-Nan Chen
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Fan Jiang
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Shenzhen Bay Laboratory, Shenzhen 518132, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Tao H, Zhao X, Zhang K, Lin P, Huang SY. Docking cyclic peptides formed by a disulfide bond through a hierarchical strategy. Bioinformatics 2022; 38:4109-4116. [PMID: 35801933 DOI: 10.1093/bioinformatics/btac486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/06/2022] [Accepted: 07/07/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Cyclization is a common strategy to enhance the therapeutic potential of peptides. Many cyclic peptide drugs have been approved for clinical use, in which the disulfide-driven cyclic peptide is one of the most prevalent categories. Molecular docking is a powerful computational method to predict the binding modes of molecules. For protein-cyclic peptide docking, a big challenge is considering the flexibility of peptides with conformers constrained by cyclization. RESULTS Integrating our efficient peptide 3D conformation sampling algorithm MODPEP2.0 and knowledge-based scoring function ITScorePP, we have proposed an extended version of our hierarchical peptide docking algorithm, named HPEPDOCK2.0, to predict the binding modes of the peptide cyclized through a disulfide against a protein. Our HPEPDOCK2.0 approach was extensively evaluated on diverse test sets and compared with the state-of-the-art cyclic peptide docking program AutoDock CrankPep (ADCP). On a benchmark dataset of 18 cyclic peptide-protein complexes, HPEPDOCK2.0 obtained a native contact fraction of above 0.5 for 61% of the cases when the top prediction was considered, compared with 39% for ADCP. On a larger test set of 25 cyclic peptide-protein complexes, HPEPDOCK2.0 yielded a success rate of 44% for the top prediction, compared with 20% for ADCP. In addition, HPEPDOCK2.0 was also validated on two other test sets of 10 and 11 complexes with apo and predicted receptor structures, respectively. HPEPDOCK2.0 is computationally efficient and the average running time for docking a cyclic peptide is about 34 min on a single CPU core, compared with 496 min for ADCP. HPEPDOCK2.0 will facilitate the study of the interaction between cyclic peptides and proteins and the development of therapeutic cyclic peptide drugs. AVAILABILITY AND IMPLEMENTATION http://huanglab.phys.hust.edu.cn/hpepdock/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Huanyu Tao
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xuejun Zhao
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Keqiong Zhang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Peicong Lin
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
4
|
Cui Z, Feng C, Chen J, Wang Y, Meng Q, Zhao S, Zhang Y, Feng D, Li Z, Sun S. Network Pharmacology Deciphers the Action of Bioactive Polypeptide in Attenuating Inflammatory Osteolysis via the Suppression of Oxidative Stress and Restoration of Bone Remodeling Balance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4913534. [PMID: 35578727 PMCID: PMC9107052 DOI: 10.1155/2022/4913534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/18/2022] [Indexed: 11/25/2022]
Abstract
Oxidative stress involves enormously in the development of chronic inflammatory bone disease, wherein the overproduction of reactive oxygen species (ROS) negatively impacts the bone remodeling via promoting osteoclastogenesis and inhibiting osteogenesis. Lacking effective therapies highlights the importance of finding novel treatments. Our previous study screened a novel bioactive peptide D7 and demonstrated it could enhance the cell behaviors and protect bone marrow mesenchymal stem cells (BMSCs). Since BMSCs are progenitor cells of osteoblast (OB), we therefore ask whether D7 could also protect against the progress of inflammatory osteolysis. To validate our hypothesis and elucidate the underlying mechanisms, we first performed network pharmacology-based analysis according to the molecule structure of D7, and then followed by pharmacological evaluation on D7 by in vitro lipopolysaccharide(LPS)-induced models. The result from network pharmacology identified 20 candidate targets of D7 for inflammatory osteolysis intervention. The further analysis of Gene Ontology (GO)/KEGG pathway enrichment suggested the therapeutic effect of D7 may primarily affect osteoclast (OC) differentiation and function during the inflammatory osteolysis. Through validating the real effects of D7 on OC and OB as postulated, results demonstrated suppressive effects of D7 on LPS-stimulated OC differentiation and resorption, via the inhibition on OC marker genes. Contrarily, by improving the expression of OB marker genes, D7 displayed promotive effects on OB differentiation and alleviated LPS-induced osteogenic damage. Further mechanism study revealed that D7 could reduce LPS-induced ROS formation and strengthen antioxidants expressions in both OC and OB precursors, ameliorating LPS-triggered redox imbalance in bone remodeling. Taken together, our findings unveiled therapeutic effects of D7 against LPS-induced inflammatory osteolysis through the suppression of oxidative stress and the restoration of the bone remodeling process, providing a new therapeutic candidate for chronic inflammatory bone diseases.
Collapse
Affiliation(s)
- Zichen Cui
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Changgong Feng
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jiazheng Chen
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Yi Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Qi Meng
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Shihao Zhao
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Yuanji Zhang
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Dianjie Feng
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Ziqing Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
- Department of Joint Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
5
|
Santini BL, Zacharias M. Rapid in silico Design of Potential Cyclic Peptide Binders Targeting Protein-Protein Interfaces. Front Chem 2020; 8:573259. [PMID: 33134275 PMCID: PMC7578414 DOI: 10.3389/fchem.2020.573259] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/08/2020] [Indexed: 12/24/2022] Open
Abstract
Rational design of specific inhibitors of protein-protein interactions is desirable for drug design to control cellular signal transduction but also for studying protein-protein interaction networks. We have developed a rapid computational approach to rationally design cyclic peptides that potentially bind at desired regions of the interface of protein-protein complexes. The methodology is based on comparing the protein backbone structure of short peptide segments (epitopes) at the protein-protein interface with a collection of cyclic peptide backbone structures. A cyclic peptide that matches the backbone structure of the segment is used as a template for a binder by adapting the amino acid side chains to the side chains found in the target complex. For a small library of cyclic peptides with known high resolution structures we found for the majority (~82%) of 154 protein-protein complexes at least one very well fitting match for a cyclic peptide template to a protein-protein interface segment. The majority of the constructed protein-cyclic peptide complexes was very stable during Molecular Dynamics simulations and showed an interaction energy score that was typically more favorable compared to interaction scores of typical peptide-protein complexes. Our cPEPmatch approach could be a promising approach for rapid suggestion of cyclic peptide binders that could be tested experimentally and further improved by chemical modification.
Collapse
Affiliation(s)
- Brianda L Santini
- Physics Department T38, Technical University of Munich, Garching, Germany
| | - Martin Zacharias
- Physics Department T38, Technical University of Munich, Garching, Germany
| |
Collapse
|
6
|
Zhang Y, Sanner MF. Docking Flexible Cyclic Peptides with AutoDock CrankPep. J Chem Theory Comput 2019; 15:5161-5168. [PMID: 31505931 DOI: 10.1021/acs.jctc.9b00557] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While a new therapeutic cyclic peptide is approved nearly every year, docking large macrocycles has remained challenging. Here, we present a new version of our peptide docking software AutoDock CrankPep (ADCP), extended to dock peptides cyclized through their backbone and/or side chain disulfide bonds. We show that within the top 10 solutions, ADCP identifies the proper interactions for 71% of a data set of 38 complexes, thus making it a useful tool for rational peptide-based drug design.
Collapse
Affiliation(s)
- Yuqi Zhang
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Michel F Sanner
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| |
Collapse
|