1
|
Dangat Y, Freindorf M, Kraka E. Mechanistic Insights into S-Depalmitolyse Activity of Cln5 Protein Linked to Neurodegeneration and Batten Disease: A QM/MM Study. J Am Chem Soc 2024; 146:145-158. [PMID: 38055807 DOI: 10.1021/jacs.3c06397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Ceroid lipofuscinosis neuronal protein 5 (Cln5) is encoded by the CLN5 gene. The genetic variants of this gene are associated with the CLN5 form of Batten disease. Recently, the first crystal structure of Cln5 was reported. Cln5 shows cysteine palmitoyl thioesterase S-depalmitoylation activity, which was explored via fluorescent emission spectroscopy utilizing the fluorescent probe DDP-5. In this work, the mechanism of the reaction between Cln5 and DDP-5 was studied computationally by applying a QM/MM methodology at the ωB97X-D/6-31G(d,p):AMBER level. The results of our study clearly demonstrate the critical role of the catalytic triad Cys280-His166-Glu183 in S-depalmitoylation activity. This is evidenced through a comparison of the pathways catalyzed by the Cys280-His166-Glu183 triad and those with only Cys280 involved. The computed reaction barriers are in agreement with the catalytic efficiency. The calculated Gibb's free-energy profile suggests that S-depalmitoylation is a rate-limiting step compared to the preceding S-palmitoylation, with barriers of 26.1 and 25.3 kcal/mol, respectively. The energetics were complemented by monitoring the fluctuations in the electron density distribution through NBO charges and bond strength alterations via local mode stretching force constants during the catalytic pathways. This comprehensive protocol led to a more holistic picture of the reaction mechanism at the atomic level. It forms the foundation for future studies on the effects of gene mutations on both the S-palmitoylation and S-depalmitoylation steps, providing valuable data for the further development of enzyme replacement therapy, which is currently the only FDA-approved therapy for childhood neurodegenerative diseases, including Batten disease.
Collapse
Affiliation(s)
- Yuvraj Dangat
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Marek Freindorf
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Elfi Kraka
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| |
Collapse
|
2
|
Brown RWB, Sharma AI, Villanueva MR, Li X, Onguka O, Zilbermintz L, Nguyen H, Falk BA, Olson CL, Taylor JM, Epting CL, Kathayat RS, Amara N, Dickinson BC, Bogyo M, Engman DM. Trypanosoma brucei Acyl-Protein Thioesterase-like (TbAPT-L) Is a Lipase with Esterase Activity for Short and Medium-Chain Fatty Acids but Has No Depalmitoylation Activity. Pathogens 2022; 11:1245. [PMID: 36364996 PMCID: PMC9693859 DOI: 10.3390/pathogens11111245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 02/12/2024] Open
Abstract
Dynamic post-translational modifications allow the rapid, specific, and tunable regulation of protein functions in eukaryotic cells. S-acylation is the only reversible lipid modification of proteins, in which a fatty acid, usually palmitate, is covalently attached to a cysteine residue of a protein by a zDHHC palmitoyl acyltransferase enzyme. Depalmitoylation is required for acylation homeostasis and is catalyzed by an enzyme from the alpha/beta hydrolase family of proteins usually acyl-protein thioesterase (APT1). The enzyme responsible for depalmitoylation in Trypanosoma brucei parasites is currently unknown. We demonstrate depalmitoylation activity in live bloodstream and procyclic form trypanosomes sensitive to dose-dependent inhibition with the depalmitoylation inhibitor, palmostatin B. We identified a homologue of human APT1 in Trypanosoma brucei which we named TbAPT-like (TbAPT-L). Epitope-tagging of TbAPT-L at N- and C- termini indicated a cytoplasmic localization. Knockdown or over-expression of TbAPT-L in bloodstream forms led to robust changes in TbAPT-L mRNA and protein expression but had no effect on parasite growth in vitro, or cellular depalmitoylation activity. Esterase activity in cell lysates was also unchanged when TbAPT-L was modulated. Unexpectedly, recombinant TbAPT-L possesses esterase activity with specificity for short- and medium-chain fatty acid substrates, leading to the conclusion, TbAPT-L is a lipase, not a depalmitoylase.
Collapse
Affiliation(s)
- Robert W. B. Brown
- Departments of Pathology, Microbiology-Immunology and Pediatrics, Northwestern University, Chicago, IL 60611, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Aabha I. Sharma
- Departments of Pathology, Microbiology-Immunology and Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Miguel Rey Villanueva
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xiaomo Li
- Departments of Pathology, Microbiology-Immunology and Pediatrics, Northwestern University, Chicago, IL 60611, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ouma Onguka
- Departments of Pathology and Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leeor Zilbermintz
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Helen Nguyen
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ben A. Falk
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Cheryl L. Olson
- Departments of Pathology, Microbiology-Immunology and Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Joann M. Taylor
- Departments of Pathology, Microbiology-Immunology and Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Conrad L. Epting
- Departments of Pathology, Microbiology-Immunology and Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Rahul S. Kathayat
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Neri Amara
- Departments of Pathology and Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bryan C. Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Matthew Bogyo
- Departments of Pathology and Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David M. Engman
- Departments of Pathology, Microbiology-Immunology and Pediatrics, Northwestern University, Chicago, IL 60611, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
3
|
Azizi SA, Kathayat RS, Dickinson BC. Activity-Based Sensing of S-Depalmitoylases: Chemical Technologies and Biological Discovery. Acc Chem Res 2019; 52:3029-3038. [PMID: 31577124 DOI: 10.1021/acs.accounts.9b00354] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While lipids were first appreciated as a critical hydrophobic barrier, our understanding of their roles at the cellular and organismal levels continues to grow. Not only are they important independent operators, providing a platform for both static and dynamic organization and communication within the cell, they also exert significant effects via the chemical modification of proteins. Addition of a lipid post-translational modification (PTM) alters protein hydrophobicity and behavior, with distinct consequences for subcellular trafficking, localization, intra- and intermolecular interactions, and stability. One of the most abundant and widespread protein lipidation events is S-acylation, installation of a long-chain lipid to the thiol of a cysteine side chain through a thioester linkage. S-Acylation is often referred to as S-palmitoylation, due to the prevalence of palmitate as the lipid modification. Unlike many lipid PTMs, S-acylation is enzymatically reversible, enabling the cell to tune proteome-wide properties through dynamic alterations in protein lipidation status. While much has been uncovered about the molecular effects of S-acylation and its implications for physiology, current biochemical and chemical methods only assess substrate lipidation levels or steady-state levels of enzyme activity. Yet, the writer protein acyl transferases (PATs) and eraser acyl protein thioesterases (APTs) are dynamically active, responsible for sometimes-rapid changes in S-palmitoylation status of target proteins. Thus, to understand the full scope, significance, and subtlety of S-deacylation and its regulation in the cell, it is necessary to observe the timing and cellular geography of regulatory enzyme activities. In this Account, we review the chemical tools developed by our group to selectively visualize and perturb the activity of APTs in live cells, highlighting the biological insights gained from their application. To visualize APT activity, we masked fluorogenic molecules with thioacylated, peptide-based APT substrate mimetics; APT activity and thus thiol deprotection releases a fluorescent product in the turn-on depalmitoylation probes (DPPs), while in ratiometric depalmitoylation probes (RDPs) the emission of the parent fluorophore is altered. Application of these probes in live cells reveals that APT activity is sensitive to cell signaling events and metabolic disturbances. Additionally, as indicated above, the location of regulatory enzymes is critical in lipid signaling, and one organelle of particular interest, due to its role in maintaining cellular homeostasis and its legion of lipidated proteins, is the mitochondria. Therefore, we developed a class of spatially constrained mitoDPPs to visualize mitochondrial APT activity as well as a selective inhibitor of mitochondrial deacylation activity, mitoFP. With these tools, we identify two mitochondrial S-depalmitoylases and connect mitochondrial S-depalmitoylation to redox buffering capacity. Moreover, some of the changes in activity observed are specific to the mitochondria, confirming spatial as well as temporal regulation of eraser protein activity. Overall, this chemical toolkit for S-depalmitoylase activity, imaging reagents and a targeted inhibitor, will continue to illuminate the regulatory mechanisms and roles of S-depalmitoylation within the complex homeostatic networks of the cell.
Collapse
Affiliation(s)
- Saara-Anne Azizi
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Medical Scientist Training Program, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois 60637, United States
| | - Rahul S. Kathayat
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Bryan C. Dickinson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
4
|
Cao Y, Qiu T, Kathayat RS, Azizi SA, Thorne AK, Ahn D, Fukata Y, Fukata M, Rice PA, Dickinson BC. ABHD10 is an S-depalmitoylase affecting redox homeostasis through peroxiredoxin-5. Nat Chem Biol 2019; 15:1232-1240. [PMID: 31740833 PMCID: PMC6871660 DOI: 10.1038/s41589-019-0399-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
S-palmitoylation is a reversible lipid post-translational modification that has been observed on mitochondrial proteins, but both the regulation and functional consequences of mitochondrial S-palmitoylation are poorly understood. Here, we show that perturbing the “erasers” of S-palmitoylation, acyl protein thioesterases (APTs), with either pan-active inhibitors or a new mitochondrial-targeted APT inhibitor, diminishes the antioxidant buffering capacity of mitochondria. Surprisingly, this effect was not mediated by the only known mitochondrial APT, but rather by a resident mitochondrial protein with no known endogenous function, ABHD10. We show that ABHD10 is a new member of the APT family of regulatory proteins and identify peroxiredoxin 5 (PRDX5), a key antioxidant protein, as the first target of ABHD10 S-depalmitoylase activity. We then discover that ABHD10 regulates the S-palmitoylation status of the nucleophilic active site residue of PRDX5, providing a direct mechanistic connection between ABHD10-mediated S-depalmitoylation of PRDX5 and its antioxidant capacity.
Collapse
Affiliation(s)
- Yang Cao
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Tian Qiu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Rahul S Kathayat
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Saara-Anne Azizi
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Medical Scientist Training Program, Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA
| | - Anneke K Thorne
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Daniel Ahn
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|