1
|
Silva-Rohwer AR, Held K, Yakhnin H, Babitzke P, Vadyvaloo V. CsrA-Mediated Translational Activation of the hmsE mRNA Enhances HmsD-Dependent C-di-GMP-Enabled Biofilm Production in Yersinia pestis. J Bacteriol 2023; 205:e0010523. [PMID: 37191545 PMCID: PMC10294631 DOI: 10.1128/jb.00105-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
The plague bacterium, Yersinia pestis, forms a biofilm-mediated blockage in the flea foregut that enhances its transmission by fleabite. Biofilm formation is positively controlled by cyclic di-GMP (c-di-GMP), which is synthesized by the diguanylate cyclases (DGC), HmsD and HmsT. While HmsD primarily promotes biofilm-mediated blockage of fleas, HmsT plays a more minor role in this process. HmsD is a component of the HmsCDE tripartite signaling system. HmsC and HmsE posttranslationally inhibit or activate HmsD, respectively. HmsT-dependent c-di-GMP levels and biofilm formation are positively regulated by the RNA-binding protein CsrA. In this study we determined whether CsrA positively regulates HmsD-dependent biofilm formation through interactions with the hmsE mRNA. Gel mobility shift assays determined that CsrA binds specifically to the hmsE transcript. RNase T1 footprint assays identified a single CsrA binding site and CsrA-induced structural changes in the hmsE leader region. Translational activation of the hmsE mRNA was confirmed in vivo using plasmid-encoded inducible translational fusion reporters and by HmsE protein expression studies. Furthermore, mutation of the CsrA binding site in the hmsE transcript significantly reduced HmsD-dependent biofilm formation. These results suggest that CsrA binding leads to structural changes in the hmsE mRNA that enhance its translation to enable increased HmsD-dependent biofilm formation. Given the requisite function of HmsD in biofilm-mediated flea blockage, this CsrA-dependent increase in HmsD activity underscores that complex and conditionally defined modulation of c-di-GMP synthesis within the flea gut is required for Y. pestis transmission. IMPORTANCE Mutations enhancing c-di-GMP biosynthesis drove the evolution of Y. pestis to flea-borne transmissibility. c-di-GMP-dependent biofilm-mediated blockage of the flea foregut enables regurgitative transmission of Y. pestis by fleabite. The Y. pestis diguanylate cyclases (DGC), HmsT and HmsD, which synthesize c-di-GMP, play significant roles in transmission. Several regulatory proteins involved in environmental sensing, as well as signal transduction and response regulation, tightly control DGC function. An example is CsrA, a global posttranscriptional regulator that modulates carbon metabolism and biofilm formation. CsrA integrates alternative carbon usage metabolism cues to activate c-di-GMP biosynthesis through HmsT. Here, we demonstrated that CsrA additionally activates hmsE translation to promote c-di-GMP biosynthesis through HmsD. This emphasizes that a highly evolved regulatory network controls c-di-GMP synthesis and Y. pestis transmission.
Collapse
Affiliation(s)
- Amelia R. Silva-Rohwer
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Kiara Held
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Viveka Vadyvaloo
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| |
Collapse
|
2
|
Tkáčová Z, Bhide K, Mochnáčová E, Petroušková P, Hruškovicová J, Kulkarni A, Bhide M. Comprehensive Mapping of the Cell Response to Borrelia bavariensis in the Brain Microvascular Endothelial Cells in vitro Using RNA-Seq. Front Microbiol 2021; 12:760627. [PMID: 34819924 PMCID: PMC8606740 DOI: 10.3389/fmicb.2021.760627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 12/01/2022] Open
Abstract
Borrelia bavariensis can invade the central nervous system (CNS) by crossing the blood-brain barrier (BBB). It is predicted that B. bavariensis evokes numerous signaling cascades in the human brain microvascular endothelial cells (hBMECs) and exploits them to traverse across the BBB. The complete picture of signaling events in hBMECs induced by B. bavariensis remains uncovered. Using RNA sequencing, we mapped 11,398 genes and identified 295 differentially expressed genes (DEGs, 251 upregulated genes and 44 downregulated genes) in B. bavariensis challenged hBMECs. The results obtained from RNA-seq were validated with qPCR. Gene ontology analysis revealed the participation of DEGs in a number of biological processes like cell communication, organization of the extracellular matrix, vesicle-mediated transport, cell response triggered by pattern recognition receptors, antigen processing via MHC class I, cellular stress, metabolism, signal transduction, etc. The expression of several non-protein coding genes was also evoked. In this manuscript, we discuss in detail the correlation between several signaling cascades elicited and the translocation of BBB by B. bavariensis. The data revealed here may contribute to a better understanding of the mechanisms employed by B. bavariensis to cross the BBB.
Collapse
Affiliation(s)
- Zuzana Tkáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Evelina Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Patrícia Petroušková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Jana Hruškovicová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
3
|
CsrA Enhances Cyclic-di-GMP Biosynthesis and Yersinia pestis Biofilm Blockage of the Flea Foregut by Alleviating Hfq-Dependent Repression of the hmsT mRNA. mBio 2021; 12:e0135821. [PMID: 34340543 PMCID: PMC8406273 DOI: 10.1128/mbio.01358-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Plague-causing Yersinia pestis is transmitted through regurgitation when it forms a biofilm-mediated blockage in the foregut of its flea vector. This biofilm is composed of an extracellular polysaccharide substance (EPS) produced when cyclic-di-GMP (c-di-GMP) levels are elevated. The Y. pestis diguanylate cyclase enzymes HmsD and HmsT synthesize c-di-GMP. HmsD is required for biofilm blockage formation but contributes minimally to in vitro biofilms. HmsT, however, is necessary for in vitro biofilms and contributes to intermediate rates of biofilm blockage. C-di-GMP synthesis is regulated at the transcriptional and posttranscriptional levels. In this, the global RNA chaperone, Hfq, posttranscriptionally represses hmsT mRNA translation. How c-di-GMP levels and biofilm blockage formation is modulated by nutritional stimuli encountered in the flea gut is unknown. Here, the RNA-binding regulator protein CsrA, which controls c-di-GMP-mediated biofilm formation and central carbon metabolism responses in many Gammaproteobacteria, was assessed for its role in Y. pestis biofilm formation. We determined that CsrA was required for markedly greater c-di-GMP and EPS levels when Y. pestis was cultivated on alternative sugars implicated in flea biofilm blockage metabolism. Our assays, composed of mobility shifts, quantification of mRNA translation, stability, and abundance, and epistasis analyses of a csrA hfq double mutant strain substantiated that CsrA represses hfq mRNA translation, thereby alleviating Hfq-dependent repression of hmsT mRNA translation. Additionally, a csrA mutant exhibited intermediately reduced biofilm blockage rates, resembling an hmsT mutant. Hence, we reveal CsrA-mediated control of c-di-GMP synthesis in Y. pestis as a tiered, posttranscriptional regulatory process that enhances biofilm blockage-mediated transmission from fleas.
Collapse
|
4
|
Käser T. Swine as biomedical animal model for T-cell research-Success and potential for transmittable and non-transmittable human diseases. Mol Immunol 2021; 135:95-115. [PMID: 33873098 DOI: 10.1016/j.molimm.2021.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Swine is biologically one of the most relevant large animal models for biomedical research. With its use as food animal that can be exploited as a free cell and tissue source for research and its high susceptibility to human diseases, swine additionally represent an excellent option for both the 3R principle and One Health research. One of the previously most limiting factors of the pig model was its arguably limited immunological toolbox. Yet, in the last decade, this toolbox has vastly improved including the ability to study porcine T-cells. This review summarizes the swine model for biomedical research with focus on T cells. It first contrasts the swine model to the more commonly used mouse and non-human primate model before describing the current capabilities to characterize and extend our knowledge on porcine T cells. Thereafter, it not only reflects on previous biomedical T-cell research but also extends into areas in which more in-depth T-cell analyses could strongly benefit biomedical research. While the former should inform on the successes of biomedical T-cell research in swine, the latter shall inspire swine T-cell researchers to find collaborations with researchers working in other areas - such as nutrition, allergy, cancer, transplantation, infectious diseases, or vaccine development.
Collapse
Affiliation(s)
- Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, 27607 Raleigh, NC, USA.
| |
Collapse
|
5
|
Knittel V, Sadana P, Seekircher S, Stolle AS, Körner B, Volk M, Jeffries CM, Svergun DI, Heroven AK, Scrima A, Dersch P. RovC - a novel type of hexameric transcriptional activator promoting type VI secretion gene expression. PLoS Pathog 2020; 16:e1008552. [PMID: 32966346 PMCID: PMC7535981 DOI: 10.1371/journal.ppat.1008552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/05/2020] [Accepted: 08/01/2020] [Indexed: 12/05/2022] Open
Abstract
Type VI secretion systems (T6SSs) are complex macromolecular injection machines which are widespread in Gram-negative bacteria. They are involved in host-cell interactions and pathogenesis, required to eliminate competing bacteria, or are important for the adaptation to environmental stress conditions. Here we identified regulatory elements controlling the T6SS4 of Yersinia pseudotuberculosis and found a novel type of hexameric transcription factor, RovC. RovC directly interacts with the T6SS4 promoter region and activates T6SS4 transcription alone or in cooperation with the LysR-type regulator RovM. A higher complexity of regulation was achieved by the nutrient-responsive global regulator CsrA, which controls rovC expression on the transcriptional and post-transcriptional level. In summary, our work unveils a central mechanism in which RovC, a novel key activator, orchestrates the expression of the T6SS weapons together with a global regulator to deploy the system in response to the availability of nutrients in the species' native environment.
Collapse
Affiliation(s)
- Vanessa Knittel
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Pooja Sadana
- Young Investigator Group Structural Biology of Autophagy, Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stephanie Seekircher
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anne-Sophie Stolle
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany
| | - Britta Körner
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany
| | - Marcel Volk
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany
| | - Cy M. Jeffries
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andrea Scrima
- Young Investigator Group Structural Biology of Autophagy, Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany
- German Center for Infection Research, Baunschweig, Germany
| |
Collapse
|
6
|
Schulte LN, Schweinlin M, Westermann AJ, Janga H, Santos SC, Appenzeller S, Walles H, Vogel J, Metzger M. An Advanced Human Intestinal Coculture Model Reveals Compartmentalized Host and Pathogen Strategies during Salmonella Infection. mBio 2020; 11:e03348-19. [PMID: 32071273 PMCID: PMC7029144 DOI: 10.1128/mbio.03348-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
A major obstacle in infection biology is the limited ability to recapitulate human disease trajectories in traditional cell culture and animal models, which impedes the translation of basic research into clinics. Here, we introduce a three-dimensional (3D) intestinal tissue model to study human enteric infections at a level of detail that is not achieved by conventional two-dimensional monocultures. Our model comprises epithelial and endothelial layers, a primary intestinal collagen scaffold, and immune cells. Upon Salmonella infection, the model mimics human gastroenteritis, in that it restricts the pathogen to the epithelial compartment, an advantage over existing mouse models. Application of dual transcriptome sequencing to the Salmonella-infected model revealed the communication of epithelial, endothelial, monocytic, and natural killer cells among each other and with the pathogen. Our results suggest that Salmonella uses its type III secretion systems to manipulate STAT3-dependent inflammatory responses locally in the epithelium without accompanying alterations in the endothelial compartment. Our approach promises to reveal further human-specific infection strategies employed by Salmonella and other pathogens.IMPORTANCE Infection research routinely employs in vitro cell cultures or in vivo mouse models as surrogates of human hosts. Differences between murine and human immunity and the low level of complexity of traditional cell cultures, however, highlight the demand for alternative models that combine the in vivo-like properties of the human system with straightforward experimental perturbation. Here, we introduce a 3D tissue model comprising multiple cell types of the human intestinal barrier, a primary site of pathogen attack. During infection with the foodborne pathogen Salmonella enterica serovar Typhimurium, our model recapitulates human disease aspects, including pathogen restriction to the epithelial compartment, thereby deviating from the systemic infection in mice. Combination of our model with state-of-the-art genetics revealed Salmonella-mediated local manipulations of human immune responses, likely contributing to the establishment of the pathogen's infection niche. We propose the adoption of similar 3D tissue models to infection biology, to advance our understanding of molecular infection strategies employed by bacterial pathogens in their human host.
Collapse
Affiliation(s)
- Leon N Schulte
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Institute for Lung Research, Philipps University, Marburg, Germany
| | - Matthias Schweinlin
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Alexander J Westermann
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | | | - Sara C Santos
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Silke Appenzeller
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Heike Walles
- Core Facility Tissue Engineering, University of Magdeburg, Magdeburg, Germany
- Fraunhofer Institute for Silicate Research ISC, Translational Centre for Regenerative Therapies TLC-RT, Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Marco Metzger
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
- Fraunhofer Institute for Silicate Research ISC, Translational Centre for Regenerative Therapies TLC-RT, Würzburg, Germany
| |
Collapse
|