1
|
Gao C, Marker SJV, Gundlach C, Poulsen HF, Bohr T, Schulz A. Tracing the opposing assimilate and nutrient flows in live conifer needles. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6677-6691. [PMID: 37668473 DOI: 10.1093/jxb/erad334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
The vasculature along conifer needles is fundamentally different from that in angiosperm leaves as it contains a unique transfusion tissue inside the bundle sheath. In this study, we used specific tracers to identify the pathway of photoassimilates from mesophyll to phloem, and the opposing pathway of nutrients from xylem to mesophyll. For symplasmic transport we applied esculin to the tip of attached pine needles and followed its movement down the phloem. For apoplasmic transport we let detached needles take up a membrane-impermeable contrast agent and used micro-X-ray computed tomography to map critical water exchange interfaces and domain borders. Microscopy and segmentation of the X-ray data enabled us to render and quantify the functional 3D structure of the water-filled apoplasm and the complementary symplasmic domain. The transfusion tracheid system formed a sponge-like apoplasmic domain that was blocked at the bundle sheath. Transfusion parenchyma cell chains bridged this domain as tortuous symplasmic pathways with strong local anisotropy which, as evidenced by the accumulation of esculin, pointed to the phloem flanks as the preferred phloem-loading path. Simple estimates supported a pivotal role of the bundle sheath, showing that a bidirectional movement of nutrient ions and assimilates is feasible and emphasizing the role of the bundle sheath in nutrient and assimilate exchange.
Collapse
Affiliation(s)
- Chen Gao
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Sean J V Marker
- Department of Physics, Technical University of Denmark. Fysikvej, 2800 Kgs. Lyngby, Denmark
| | - Carsten Gundlach
- Department of Physics, Technical University of Denmark. Fysikvej, 2800 Kgs. Lyngby, Denmark
| | - Henning F Poulsen
- Department of Physics, Technical University of Denmark. Fysikvej, 2800 Kgs. Lyngby, Denmark
| | - Tomas Bohr
- Department of Physics, Technical University of Denmark. Fysikvej, 2800 Kgs. Lyngby, Denmark
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
2
|
Chia JC, Yan J, Rahmati Ishka M, Faulkner MM, Simons E, Huang R, Smieska L, Woll A, Tappero R, Kiss A, Jiao C, Fei Z, Kochian LV, Walker E, Piñeros M, Vatamaniuk OK. Loss of OPT3 function decreases phloem copper levels and impairs crosstalk between copper and iron homeostasis and shoot-to-root signaling in Arabidopsis thaliana. THE PLANT CELL 2023; 35:2157-2185. [PMID: 36814393 PMCID: PMC10226573 DOI: 10.1093/plcell/koad053] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/16/2022] [Accepted: 02/17/2023] [Indexed: 05/30/2023]
Abstract
Copper (Cu) and iron (Fe) are essential micronutrients that are toxic when accumulating in excess in cells. Thus, their uptake by roots is tightly regulated. While plants sense and respond to local Cu availability, the systemic regulation of Cu uptake has not been documented in contrast to local and systemic control of Fe uptake. Fe abundance in the phloem has been suggested to act systemically, regulating the expression of Fe uptake genes in roots. Consistently, shoot-to-root Fe signaling is disrupted in Arabidopsis thaliana mutants lacking the phloem companion cell-localized Fe transporter, OLIGOPEPTIDE TRANSPORTER 3 (AtOPT3). We report that AtOPT3 also transports Cu in heterologous systems and contributes to its delivery from sources to sinks in planta. The opt3 mutant contained less Cu in the phloem, was sensitive to Cu deficiency and mounted a transcriptional Cu deficiency response in roots and young leaves. Feeding the opt3 mutant and Cu- or Fe-deficient wild-type seedlings with Cu or Fe via the phloem in leaves downregulated the expression of both Cu- and Fe-deficiency marker genes in roots. These data suggest the existence of shoot-to-root Cu signaling, highlight the complexity of Cu/Fe interactions, and the role of AtOPT3 in fine-tuning root transcriptional responses to the plant Cu and Fe needs.
Collapse
Affiliation(s)
- Ju-Chen Chia
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Jiapei Yan
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Maryam Rahmati Ishka
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Marta Marie Faulkner
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Eli Simons
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Rong Huang
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
| | - Louisa Smieska
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
| | - Arthur Woll
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853, USA
| | - Ryan Tappero
- National Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Andrew Kiss
- National Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Chen Jiao
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, NY 14853, USA
| | - Leon V Kochian
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, NY 14853, USA
| | - Elsbeth Walker
- Department of Biology, University of Massachusetts, MA 01003, USA
| | - Miguel Piñeros
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, NY 14853, USA
| | - Olena K Vatamaniuk
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Phloem iron remodels root development in response to ammonium as the major nitrogen source. Nat Commun 2022; 13:561. [PMID: 35091578 PMCID: PMC8799741 DOI: 10.1038/s41467-022-28261-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 01/10/2022] [Indexed: 01/20/2023] Open
Abstract
Plants use nitrate and ammonium as major nitrogen (N) sources, each affecting root development through different mechanisms. However, the exact signaling pathways involved in root development are poorly understood. Here, we show that, in Arabidopsis thaliana, either disruption of the cell wall-localized ferroxidase LPR2 or a decrease in iron supplementation efficiently alleviates the growth inhibition of primary roots in response to NH4+ as the N source. Further study revealed that, compared with nitrate, ammonium led to excess iron accumulation in the apoplast of phloem in an LPR2-dependent manner. Such an aberrant iron accumulation subsequently causes massive callose deposition in the phloem from a resulting burst of reactive oxygen species, which impairs the function of the phloem. Therefore, ammonium attenuates primary root development by insufficiently allocating sucrose to the growth zone. Our results link phloem iron to root morphology in response to environmental cues.
Collapse
|
4
|
Tian L, Liang C, Fu C, Qiang T, Liu Y, Ju X, Shi Z, Xia J, Li H. Esculin and ferric citrate-incorporated sturgeon skin gelatine as an antioxidant film for food packaging to prevent Enterococcus faecalis contamination. Food Funct 2020; 11:9129-9143. [PMID: 33026011 DOI: 10.1039/d0fo01510e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Herein, a sturgeon skin gelatine film combined with esculin and ferric citrate was developed as an edible food packaging material to prevent Enterococcus faecalis (E. faecalis) contamination. E. faecalis is able to hydrolyse esculin in the film, and then the hydrolysed product, esculetin, combines with ferric citrate to form a brown-black phenol iron complex. This phenomenon can be observed easily after 48 h of contamination under visible light, and it can be determined under 365 nm ultraviolet light with high sensitivity. With the addition of esculin and ferric citrate, the film showed better mechanical properties and water vapour permeability than those of the unmodified gelatine. When an increased amount of esculin was added, an increase in thermal stability, antioxidant activity, and antioxidant stability of the film was observed. These physicochemical characteristics are beneficial for developing a packaging material for food storage that mitigates foodborne illness caused by E. faecalis.
Collapse
Affiliation(s)
- Lei Tian
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, P.R. China and College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P.R. China
| | - Chengyuan Liang
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, P.R. China
| | - Chao Fu
- Department of Clinical Laboratory, Xi'an Fourth Hospital, Xi'an 710004, P.R. China.
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P.R. China
| | - Yuzhi Liu
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, P.R. China
| | - Xingke Ju
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, P.R. China
| | - Zhenfeng Shi
- Department of Urology Surgery Center, Xinjiang Uyghur People's Hospital, Urumqi, 830002, P.R. China
| | - Juan Xia
- Laboratory of Hematologic Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, P.R. China
| | - Han Li
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, P.R. China
| |
Collapse
|