1
|
Bernula P, Pettkó-Szandtner A, Hajdu A, Kozma-Bognár L, Josse EM, Ádám É, Nagy F, Viczián A. SUMOylation of PHYTOCHROME INTERACTING FACTOR 3 promotes photomorphogenesis in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2021; 229:2050-2061. [PMID: 33078389 DOI: 10.1111/nph.17013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 10/07/2020] [Indexed: 05/22/2023]
Abstract
In Arabidopsis thaliana, phytochrome B (phyB) is the dominant receptor of photomorphogenic development under red light. Phytochrome B interacts with a set of downstream regulatory proteins, including PHYTOCHROME INTERACTING FACTOR 3 (PIF3). The interaction between PIF3 and photoactivated phyB leads to the rapid phosphorylation and degradation of PIF3 and also to the degradation of phyB, events which are required for proper photomorphogenesis. Here we report that PIF3 is SUMOylated at the Lys13 (K13) residue and that we could detect this posttranslational modification in a heterologous experimental system and also in planta. We also found that the SUMO acceptor site mutant PIF3(K13R) binds more strongly to the target promoters than its SUMOylated, wild-type counterpart. Seedlings expressing PIF3(K13R) show an elongated hypocotyl response, elevated photoprotection and higher transcriptional induction of red-light responsive genes compared with plantlets expressing wild-type PIF3. These observations are supported by the lower level of phyB in plants which possess only PIF3(K13R), indicating that SUMOylation of PIF3 also alters photomorphogenesis via the regulation of phyB levels. In conclusion, whereas SUMOylation is generally connected to different stress responses, it also fine-tunes light signalling by reducing the biological activity of PIF3, thus promoting photomorphogenesis.
Collapse
Affiliation(s)
- Péter Bernula
- Institute of Plant Biology, Biological Research Centre, Szeged, H-6726, Hungary
| | | | - Anita Hajdu
- Institute of Plant Biology, Biological Research Centre, Szeged, H-6726, Hungary
| | - László Kozma-Bognár
- Institute of Plant Biology, Biological Research Centre, Szeged, H-6726, Hungary
- Department of Genetics, Faculty of Sciences and Informatics, University of Szeged, Szeged, H-6726, Hungary
| | - Eve-Marie Josse
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3JH, UK
| | - Éva Ádám
- Institute of Plant Biology, Biological Research Centre, Szeged, H-6726, Hungary
- Department of Medical Genetics, Faculty of Medicine, University of Szeged, Szeged, H-6720, Hungary
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre, Szeged, H-6726, Hungary
| | - András Viczián
- Institute of Plant Biology, Biological Research Centre, Szeged, H-6726, Hungary
| |
Collapse
|