1
|
Kuril AK, Saravanan K. High-throughput method for Peptide mapping and Amino acid sequencing for Calcitonin Salmon in Calcitonin Salmon injection using Ultra High Performance Liquid Chromatography - High Resolution Mass Spectrometry (UHPLC-HRMS) with the application of Bioinformatic tools. J Pharm Biomed Anal 2024; 243:116094. [PMID: 38479303 DOI: 10.1016/j.jpba.2024.116094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Tandem mass spectrometry (MS/MS) can provide direct and accurate sequence characterization of synthetic peptide drugs, and peptide drug products including side chain modifications in the Peptide drugs. This article explains a step-by-step guide to developing a high-throughput method using high resolution mass spectrometry for characterization of Calcitonin Salmon injection containing high proportion of UV-active excipients. METHODS The major challenge in the method development of Amino acid sequencing and Peptide mapping was presence of phenol in drug product. Phenol is a UV-active excipient and reacts with both Dithiothreitol (DTT) and Trypsin. Hence Calcitonin Salmon was extracted from the Calcitonin Salmon injection using solid phase extraction after the extraction, Amino acid sequencing and peptide mapping study was performed. Upon incubation of Calcitonin Salmon with Trypsin and DTT, digested fragments were generated which were separated by mass compatible reverse phase chromatography and the molecular mass of each fragment was determined using HRMS. RESULTS A reverse phase chromatographic method was developed using UHPLC-HRMS for the determination of direct mass, peptide mapping and to determine the amino acid sequencing in the Calcitonin Salmon injection. The method was found Specific and fragments after trypsin digest are well resolved from each other and the molecular mass of each fragment was determined using HRMS. Sequencing was performed using automated identification of b and y ions annotation and identifications based on MS/MS spectra using Biopharma finder and Proteome discoverer software. CONCLUSION Using this approach 100% protein coverage was obtained and protein was identified as Calcitonin Salmon and the observed masses of tryptic digest of peptide was found similar with theoretical masses. The method can be used for both UV and MS based Peptide mapping and whereas the UV based peptide mapping method can be used as identification test for Calcitonin Salmon drug substance and drug product in quality control.
Collapse
Affiliation(s)
| | - K Saravanan
- Bhagwant University, Sikar Road, Ajmer, Rajasthan, India
| |
Collapse
|
2
|
Arias D, Zepeda V, Nancucheo I, Saldaña M, Galleguillos PA. Osmotic response in Leptospirillum ferriphilum isolated from an industrial copper bioleaching environment to sulfate. Front Microbiol 2024; 15:1369244. [PMID: 38855770 PMCID: PMC11157003 DOI: 10.3389/fmicb.2024.1369244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
Iron and sulfur-oxidizing microorganisms play important roles in several natural and industrial processes. Leptospirillum (L.) ferriphilum, is an iron-oxidizing microorganism with a remarkable adaptability to thrive in extreme acidic environments, including heap bioleaching processes, acid mine drainage (AMD) and natural acidic water. A strain of L. ferriphilum (IESL25) was isolated from an industrial bioleaching process in northern Chile. This strain was challenged to grow at increasing concentrations of sulfate in order to assess changes in protein expression profiles, cells shape and to determine potential compatible solute molecules. The results unveiled changes in three proteins: succinyl CoA (SCoA) synthetase, isocitrate dehydrogenase (IDH) and aspartate semialdehyde dehydrogenase (ASD); which were notably overexpressed when the strain grew at elevated concentrations of sulfate. ASD plays a pivotal role in the synthesis of the compatible solute ectoine, which was identified along with hydroxyectoine by using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF). The relationship between IDH, SCoA, and ectoine production could be due to the TCA cycle, in which both enzymes produce metabolites that can be utilized as precursors or intermediates in the biosynthesis of ectoine. In addition, distinct filamentous cellular morphology in L. ferriphilum IESL25 was observed when growing under sulfate stress conditions. This study highlights a new insight into the possible cellular responses of L. ferriphilum under the presence of high sulfate levels, commonly found in bioleaching of sulfide minerals or AMD environments.
Collapse
Affiliation(s)
- Dayana Arias
- Laboratory of Molecular Biology and Applied Microbiology, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Víctor Zepeda
- Scientific and Technological Research Centre for Mining Research, CICITEM, Antofagasta, Chile
| | - Ivan Nancucheo
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Concepción, Chile
| | - Manuel Saldaña
- Faculty of Engineering and Architecture, Arturo Prat University, Iquique, Chile
| | - Pedro A. Galleguillos
- Scientific and Technological Research Centre for Mining Research, CICITEM, Antofagasta, Chile
| |
Collapse
|
3
|
Pérez-López C, Ginebreda A, Barcelo D, Tauler R. SigSel: A MATLAB package for the pre and post-treatment of high-resolution mass spectrometry signals using the ROIMCR methodology. MethodsX 2023; 10:102199. [PMID: 37424752 PMCID: PMC10326443 DOI: 10.1016/j.mex.2023.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/24/2023] [Indexed: 07/11/2023] Open
Abstract
The Regions of Interest Multivariate curve Resolution (ROIMCR) methodology has gained significance for analyzing mass spectrometry data. The new SigSel package improves the ROIMCR methodology by providing a filtering step to reduce computational costs and to identify chemical compounds giving low-intensity signals. SigSel allows the visualization and assessment of ROIMCR results and filters out components resolved as interferences and background noise. This improves the analysis of complex mixtures and facilitates the identification of chemical compounds for statistical or chemometrics analysis. SigSel has been tested using metabolomics samples of mussels exposed to the sulfamethoxazole antibiotic. It begins by analyzing the data according to their charge state, eliminating signals considered background noise, and reducing the size of the datasets. In the ROIMCR analysis, the resolution of 30 ROIMCR components was achieved. After evaluating these components, 24 were ultimately selected explaining 99.05% of the total data variance. From ROIMCR results, chemical annotation is performed using different methods: •Generating a list of signals and reanalyzing them in a data-dependent analysis.•Comparing the ROIMCR resolved mass spectra to those stored in online repositories.•Searching MS signals of chemical compounds in the ROIMCR resolved spectra profiles.
Collapse
Affiliation(s)
- Carlos Pérez-López
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Department of Environmental Chemistry, Jordi Girona 18–26, Barcelona 08034, Spain
| | - Antoni Ginebreda
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Department of Environmental Chemistry, Jordi Girona 18–26, Barcelona 08034, Spain
| | - Damia Barcelo
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Department of Environmental Chemistry, Jordi Girona 18–26, Barcelona 08034, Spain
- Catalan Institute for Water Research (ICRA-CERCA), Emili Grahit 101, Parc Científic i Tecnològic de la Universitat de Girona, Edifici H2O, Girona 17003, Spain
| | - Roma Tauler
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Department of Environmental Chemistry, Jordi Girona 18–26, Barcelona 08034, Spain
| |
Collapse
|
4
|
Meta-Analysis of MS-Based Proteomics Studies Indicates Interferon Regulatory Factor 4 and Nucleobindin1 as Potential Prognostic and Drug Resistance Biomarkers in Diffuse Large B Cell Lymphoma. Cells 2023; 12:cells12010196. [PMID: 36611989 PMCID: PMC9818977 DOI: 10.3390/cells12010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
The prognosis of diffuse large B cell lymphoma (DLBCL) is inaccurately predicted using clinical features and immunohistochemistry (IHC) algorithms. Nomination of a panel of molecules as the target for therapy and predicting prognosis in DLBCL is challenging because of the divergences in the results of molecular studies. Mass spectrometry (MS)-based proteomics in the clinic represents an analytical tool with the potential to improve DLBCL diagnosis and prognosis. Previous proteomics studies using MS-based proteomics identified a wide range of proteins. To achieve a consensus, we reviewed MS-based proteomics studies and extracted the most consistently significantly dysregulated proteins. These proteins were then further explored by analyzing data from other omics fields. Among all significantly regulated proteins, interferon regulatory factor 4 (IRF4) was identified as a potential target by proteomics, genomics, and IHC. Moreover, annexinA5 (ANXA5) and nucleobindin1 (NUCB1) were two of the most up-regulated proteins identified in MS studies. Functional enrichment analysis identified the light zone reactions of the germinal center (LZ-GC) together with cytoskeleton locomotion functions as enriched based on consistent, significantly dysregulated proteins. In this study, we suggest IRF4 and NUCB1 proteins as potential biomarkers that deserve further investigation in the field of DLBCL sub-classification and prognosis.
Collapse
|
5
|
Cui M, Cheng C, Zhang L. High-throughput proteomics: a methodological mini-review. J Transl Med 2022; 102:1170-1181. [PMID: 36775443 PMCID: PMC9362039 DOI: 10.1038/s41374-022-00830-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 11/15/2022] Open
Abstract
Proteomics plays a vital role in biomedical research in the post-genomic era. With the technological revolution and emerging computational and statistic models, proteomic methodology has evolved rapidly in the past decade and shed light on solving complicated biomedical problems. Here, we summarize scientific research and clinical practice of existing and emerging high-throughput proteomics approaches, including mass spectrometry, protein pathway array, next-generation tissue microarrays, single-cell proteomics, single-molecule proteomics, Luminex, Simoa and Olink Proteomics. We also discuss important computational methods and statistical algorithms that can maximize the mining of proteomic data with clinical and/or other 'omics data. Various principles and precautions are provided for better utilization of these tools. In summary, the advances in high-throughput proteomics will not only help better understand the molecular mechanisms of pathogenesis, but also to identify the signature signaling networks of specific diseases. Thus, modern proteomics have a range of potential applications in basic research, prognostic oncology, precision medicine, and drug discovery.
Collapse
Affiliation(s)
- Miao Cui
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pathology, Mount Sinai West, New York, NY, USA
| | - Chao Cheng
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA. .,Department of Medicine, Baylor College of Medicine, Houston, TX, USA. .,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | - Lanjing Zhang
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA. .,Department of Pathology, Princeton Medical Center, Plainsboro, NJ, USA. .,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA. .,Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
6
|
Peña FJ, Ortiz-Rodríguez JM, Gaitskell-Phillips GL, Gil MC, Ortega-Ferrusola C, Martín-Cano FE. An integrated overview on the regulation of sperm metabolism (glycolysis-Krebs cycle-oxidative phosphorylation). Anim Reprod Sci 2022; 246:106805. [PMID: 34275685 DOI: 10.1016/j.anireprosci.2021.106805] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022]
Abstract
An overview of the sperm metabolism is presented; using the stallion as a model we review glycolysis, Krebs Cycle and oxidative phosphorylation, paying special attention to the interactions among them. In addition, metabolism implies a series of coordinated oxidation-reduction reactions and in the course of these reactions reactive oxygen species (ROS) and reactive oxoaldehydes are produced ; the electron transport chain (ETC) in the mitochondria is the main source of the anion superoxide and hydrogen peroxide, while glycolysis produces 2-oxoaldehydes such as methylglyoxal as byproducts; due to the adjacent carbonyl groups are strong electrophiles (steal electrons oxidizing other compounds). Sophisticated mechanisms exist to maintain redox homeostasis, because ROS under controlled production also have important regulatory functions in the spermatozoa. The interactions between metabolism and production of reactive oxygen species are essential for proper sperm function, and deregulation of these processes rapidly leads to sperm malfunction and finally death. Lastly, we briefly describe two techniques that will expand our knowledge on sperm metabolism in the coming decades, metabolic flow cytometry and the use of the "omics" technologies, proteomics and metabolomics, specifically the micro and nano proteomics/metabolomics. A better understanding of the metabolism of the spermatozoa will lead to big improvements in sperm technologies and the diagnosis and treatment of male factor infertility.
Collapse
Affiliation(s)
- Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain.
| | - José M Ortiz-Rodríguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Gemma L Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Maria C Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Cristina Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Francisco E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| |
Collapse
|
7
|
Cai M, Zhang N, Yang D, Jiao Q, Qu P, Zhang Y. High expression of SGK1 in thrombosis of acute ST-segment elevation myocardial infarction: Based on proteomics analysis of intracoronary thrombosis. Rev Port Cardiol 2022; 41:271-279. [DOI: 10.1016/j.repc.2021.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 01/24/2023] Open
|
8
|
McMillen JC, Gutierrez DB, Judd AM, Spraggins JM, Caprioli RM. Enhancement of Tryptic Peptide Signals from Tissue Sections Using MALDI IMS Postionization (MALDI-2). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2583-2591. [PMID: 34515472 DOI: 10.1021/jasms.1c00213] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) allows for highly multiplexed, unlabeled mapping of analytes from tissue sections. However, further work is needed to improve the sensitivity and depth of coverage for protein and peptide IMS. We demonstrate signal enhancement of proteolytic peptides from thin tissue sections of human kidney by conventional MALDI (MALDI-1) augmented using a second ionizing laser (termed MALDI-2). Proteins were digested in situ using trypsin prior to IMS analysis. For tentative identification of peptides and proteins, a tissue homogenate from the same organ used for IMS was analyzed by LC-MS/MS, and data are available via ProteomeXchange with identifier PXD023877. These identified proteins were then digested in silico to generate a database of theoretical peptides to then match to MALDI IMS data sets. Peptides were tentatively identified by matching the MALDI peak list to the database peptide list based on mass accuracy (5 ppm mass error). This resulted in 1337 ± 96 (n = 3) peptides and 2076 ± 362 (n = 3) unique peptides matched to IMS peaks from MALDI-1 and MALDI-2, respectively. Protein identifications requiring two or more peptides per protein resulted in 276 ± 20 proteins with MALDI-1 and 401 ± 60 with MALDI-2. These results demonstrate that MALDI-2 provides enhanced sensitivity for the spatial mapping of tryptic peptides and significantly increases the number of proteins identified in IMS experiments.
Collapse
Affiliation(s)
- Josiah C McMillen
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
| | - Danielle B Gutierrez
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
| | - Audra M Judd
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
| | - Jeffrey M Spraggins
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue S #3218, Nashville, Tennessee 37205, United States
| | - Richard M Caprioli
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University, 1161 21st Avenue S, Nashville, Tennessee 37232, United States
| |
Collapse
|
9
|
Two-Dimensional Gel Electrophoresis and Pro-Q Diamond Phosphoprotein Stain-Based Plant Phosphoproteomics. Methods Mol Biol 2021. [PMID: 34270053 DOI: 10.1007/978-1-0716-1625-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Pro-Q diamond phosphoprotein gel stain is a fluorescent stain to detect phosphorylated proteins in polyacrylamide gels with high sensitivity. Here, we describe an entire procedure for phosphoproteomics analysis of Arabidopsis seedlings by a combination of Pro-Q diamond stain and two-dimensional gel electrophoresis (2-DE). The workflow involves total protein preparation, protein separation by 2-DE, the second-dimensional gel staining, phosphoproteins detection, and peptides preparation for matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. Approximately 300 phosphoproteins can be detected using this method.
Collapse
|
10
|
Smolikova G, Gorbach D, Lukasheva E, Mavropolo-Stolyarenko G, Bilova T, Soboleva A, Tsarev A, Romanovskaya E, Podolskaya E, Zhukov V, Tikhonovich I, Medvedev S, Hoehenwarter W, Frolov A. Bringing New Methods to the Seed Proteomics Platform: Challenges and Perspectives. Int J Mol Sci 2020; 21:E9162. [PMID: 33271881 PMCID: PMC7729594 DOI: 10.3390/ijms21239162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
For centuries, crop plants have represented the basis of the daily human diet. Among them, cereals and legumes, accumulating oils, proteins, and carbohydrates in their seeds, distinctly dominate modern agriculture, thus play an essential role in food industry and fuel production. Therefore, seeds of crop plants are intensively studied by food chemists, biologists, biochemists, and nutritional physiologists. Accordingly, seed development and germination as well as age- and stress-related alterations in seed vigor, longevity, nutritional value, and safety can be addressed by a broad panel of analytical, biochemical, and physiological methods. Currently, functional genomics is one of the most powerful tools, giving direct access to characteristic metabolic changes accompanying plant development, senescence, and response to biotic or abiotic stress. Among individual post-genomic methodological platforms, proteomics represents one of the most effective ones, giving access to cellular metabolism at the level of proteins. During the recent decades, multiple methodological advances were introduced in different branches of life science, although only some of them were established in seed proteomics so far. Therefore, here we discuss main methodological approaches already employed in seed proteomics, as well as those still waiting for implementation in this field of plant research, with a special emphasis on sample preparation, data acquisition, processing, and post-processing. Thereby, the overall goal of this review is to bring new methodologies emerging in different areas of proteomics research (clinical, food, ecological, microbial, and plant proteomics) to the broad society of seed biologists.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Daria Gorbach
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Elena Lukasheva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Gregory Mavropolo-Stolyarenko
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Tatiana Bilova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alena Soboleva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alexander Tsarev
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Ekaterina Romanovskaya
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Ekaterina Podolskaya
- Institute of Analytical Instrumentation, Russian Academy of Science; 190103 St. Petersburg, Russia;
- Institute of Toxicology, Russian Federal Medical Agency; 192019 St. Petersburg, Russia
| | - Vladimir Zhukov
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
| | - Igor Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
- Department of Genetics and Biotechnology, St. Petersburg State University; 199034 St. Petersburg, Russia
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Wolfgang Hoehenwarter
- Proteome Analytics Research Group, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany;
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| |
Collapse
|