1
|
Yarlett N, Morada M, Schaefer DA, Ackman K, Carranza E, Baptista RDP, Riggs MW, Kissinger JC. Genomic and virulence analysis of in vitro cultured Cryptosporidium parvum. PLoS Pathog 2024; 20:e1011992. [PMID: 38416794 PMCID: PMC10927135 DOI: 10.1371/journal.ppat.1011992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 03/11/2024] [Accepted: 01/22/2024] [Indexed: 03/01/2024] Open
Abstract
Recent advances in the in vitro cultivation of Cryptosporidium parvum using hollow fiber bioreactor technology (HFB) have permitted continuous growth of parasites that complete all life cycle stages. The method provides access to all stages of the parasite and provides a method for non-animal production of oocysts for use in clinical trials. Here we examined the effect of long-term (>20 months) in vitro culture on virulence-factors, genome conservation, and in vivo pathogenicity of the host by in vitro cultured parasites. We find low-level sequence variation that is consistent with that observed in calf-passaged parasites. Further using a calf model infection, oocysts obtained from the HFB caused diarrhea of the same volume, duration and oocyst shedding intensity as in vivo passaged parasites.
Collapse
Affiliation(s)
- Nigel Yarlett
- Department of Chemistry and Physical Sciences, Pace University, New York, New York, United States of America
- Haskins Laboratories, Pace University, New York, New York, United States of America
| | - Mary Morada
- Haskins Laboratories, Pace University, New York, New York, United States of America
| | - Deborah A. Schaefer
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Kevin Ackman
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Elizabeth Carranza
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Rodrigo de Paula Baptista
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Michael W. Riggs
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Jessica C. Kissinger
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
2
|
Bhalchandra S, Gevers K, Heimburg-Molinaro J, van Roosmalen M, Coppens I, Cummings RD, Ward HD. Identification of the glycopeptide epitope recognized by a protective Cryptosporidium monoclonal antibody. Infect Immun 2023; 91:e0027523. [PMID: 37725059 PMCID: PMC10580954 DOI: 10.1128/iai.00275-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 09/21/2023] Open
Abstract
Cryptosporidium species are a leading cause of pediatric diarrheal disease and death in low- and middle-income countries and pose a particular threat to immunocompromised individuals. As a zoonotic pathogen, Cryptosporidium can have devastating effects on the health of neonatal calves. Despite its impact on human and animal health, consistently effective drug treatments for cryptosporidiosis are lacking and no vaccine is available. We previously showed that C. parvum mucin-like glycoproteins, gp40, and gp900 express an epitope identified by a monoclonal antibody 4E9. 4E9 neutralized C. parvum infection in vitro as did glycan-binding proteins specific for the Tn antigen (GalNAc-α1-S/T). Here, we show that 4E9 ameliorates disease in vivo in a calf challenge model. The 4E9 epitope is present on C. hominis in addition to C. parvum gp40 and gp900 and localizes to the plasma membrane and dense granules of invasive and intracellular stages. To characterize the epitope recognized by 4E9, we probed a glycan array containing over 500 defined glycans together with a custom-made glycopeptide microarray containing glycopeptides from native mucins or C. parvum gp40 and gp15. 4E9 exhibited no binding to the glycan array but bound strongly to glycopeptides from native mucins or gp40 on the glycopeptide array, suggesting that the antibody epitope contains both peptide and glycan moieties. 4E9 only recognized glycopeptides with adjacent S or T residues in the motif S*/T*-X-S*/T* where X = 0 or 1. These data define the 4E9 epitope and have implications for the inclusion of the epitope in the development of vaccines or other immune-based therapies.
Collapse
Affiliation(s)
- Seema Bhalchandra
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, USA
| | | | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Honorine D. Ward
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Gamsjäger L, Cirone KM, Schluessel S, Campsall M, Herik A, Lahiri P, Young D, Dufour A, Sapountzis P, Otani S, Gomez DE, Windeyer MC, Cobo ER. Host innate immune responses and microbiome profile of neonatal calves challenged with Cryptosporidium parvum and the effect of bovine colostrum supplementation. Front Cell Infect Microbiol 2023; 13:1165312. [PMID: 37207189 PMCID: PMC10189047 DOI: 10.3389/fcimb.2023.1165312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/05/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction Calves are highly susceptible to gastrointestinal infection with Cryptosporidium parvum (C. parvum), which can result in watery diarrhea and eventually death or impaired development. With little to no effective therapeutics, understanding the host's microbiota and pathogen interaction at the mucosal immune system has been critical to identify and test novel control strategies. Methods Herein, we used an experimental model of C. parvum challenge in neonatal calves to describe the clinical signs and histological and proteomic profiling of the mucosal innate immunity and microbiota shifts by metagenomics in the ileum and colon during cryptosporidiosis. Also, we investigated the impact of supplemental colostrum feeding on C. parvum infection. Results We showed that C. parvum challenged calves experienced clinical signs including pyrexia and diarrhea 5 days post challenge. These calves showed ulcerative neutrophil ileitis with a proteomic signature driven by inflammatory effectors, including reactive oxygen species and myeloperoxidases. Colitis was also noticed with an aggravated mucin barrier depletion and incompletely filled goblet cells. The C. parvum challenged calves also displayed a pronounced dysbiosis with a high prevalence of Clostridium species (spp.) and number of exotoxins, adherence factors, and secretion systems related to Clostridium spp. and other enteropathogens, including Campylobacter spp., Escherichia sp., Shigella spp., and Listeria spp. Daily supplementation with a high-quality bovine colostrum product mitigated some of the clinical signs and modulated the gut immune response and concomitant microbiota to a pattern more similar to that of healthy unchallenged calves. Discussion C. parvum infection in neonatal calves provoked severe diarrheic neutrophilic enterocolitis, perhaps augmented due to the lack of fully developed innate gut defenses. Colostrum supplementation showed limited effect mitigating diarrhea but demonstrated some clinical alleviation and specific modulatory influence on host gut immune responses and concomitant microbiota.
Collapse
Affiliation(s)
- Lisa Gamsjäger
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Karina M. Cirone
- Laboratorio de Bacteriología, Grupo de Sanidad Animal, Unidad Integrada INTA, Universidad Nacional de Mar del Plata (UNMdP), Balcarce, Buenos Aires, Argentina
| | | | - Mackenzie Campsall
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Aydin Herik
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Priyoshi Lahiri
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Daniel Young
- Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Antoine Dufour
- Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Panagiotis Sapountzis
- Université Clermont Auvergne, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Clermont-Ferrand, France
| | - Saria Otani
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Diego E. Gomez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - M. Claire Windeyer
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Eduardo R. Cobo
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- *Correspondence: Eduardo R. Cobo,
| |
Collapse
|
4
|
He X, Huang W, Sun L, Hou T, Wan Z, Li N, Guo Y, Kváč M, Xiao L, Feng Y. A productive immunocompetent mouse model of cryptosporidiosis with long oocyst shedding duration for immunological studies. J Infect 2022; 84:710-721. [PMID: 35192895 DOI: 10.1016/j.jinf.2022.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Studies on the pathogenesis and immune responses of Cryptosporidium infection and development of drugs and vaccines use mostly immunocompromised mouse models. In this study, we establish an immunocompetent mouse model of cryptosporidiosis with high intensity and long duration of infection. METHODS We have obtained a Cryptosporidium tyzzeri isolate from laboratory mice, and infect adult C57BL/6J mice experimentally with the isolate for determinations of infectivity, infection patterns, pathological changes, and transcriptomic responses. RESULTS The isolate has an ID50 of 5.2 oocysts, with oocyst shedding lasting at high levels for >2 months. The oocyst shedding is boosted by immunosuppression of animals and suppressed by paromomycin treatment. The isolate induces strong inflammatory and acquired immune responses, but down-regulates the expression of α-defensins in epithelium. Comparative genomics analysis has revealed significant sequence differences from other isolates in subtelomeric genes. The down-regulation of the expression of α-defensins may be responsible for the high-intensity and long-lasting infection in this animal model. CONCLUSIONS The immunocompetent mouse model of cryptosporidiosis developed has the advantages of high oocyst shedding intensity and long oocyst shedding duration. It provides an effective mechanism for the propagation of Cryptosporidium, evaluations of potential therapeutics, and studies of pathogen biology and immune responses.
Collapse
Affiliation(s)
- Xi He
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture. Guangzhou, Guangdong 510642, China.
| | - Wanyi Huang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Lianbei Sun
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Tianyi Hou
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Zhuowei Wan
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Martin Kváč
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice 370 05, Czech Republic.
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture. Guangzhou, Guangdong 510642, China.
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture. Guangzhou, Guangdong 510642, China.
| |
Collapse
|
5
|
Lu C, Liu X, Liu J, Tang X, Zhu G, Striepen B, Suo X. Immunocompetent rabbits infected with Cryptosporidium cuniculus as an animal model for anti-cryptosporidial drug testing. Int J Parasitol 2021; 52:205-210. [PMID: 34774541 DOI: 10.1016/j.ijpara.2021.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 11/05/2022]
Abstract
Cryptosporidium is one of the leading causes of diarrheal disease in humans and animals, which can be severe and deadly in neonates and immunocompromised hosts. Studies on the biology of Cryptosporidium and drug discovery efforts have been hindered by a number of factors including the limited availability of animal models. Here, we report the establishment and characterization of an immunocompetent rabbit model for infection with Cryptosporidium cuniculus. By testing four known anti-cryptosporidial compounds (nitazoxanide, baicalein, curcumin and matrine), we showed that the rabbit could be used as an alternative animal model for evaluating anti-cryptosporidial drug efficacy in vivo.
Collapse
Affiliation(s)
- Chunxia Lu
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xianyong Liu
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xinming Tang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xun Suo
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Dinler Ay C, Voyvoda H, Ulutas PA, Karagenc T, Ulutas B. Prophylactic and therapeutic efficacy of clinoptilolite against Cryptosporidium parvum in experimentally challenged neonatal lambs. Vet Parasitol 2021; 299:109574. [PMID: 34509876 DOI: 10.1016/j.vetpar.2021.109574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/12/2021] [Accepted: 09/04/2021] [Indexed: 11/18/2022]
Abstract
This study was designed to test the prophylactic and therapeutic efficacy of clinoptilolite against Cryptosporidium (C.) parvum infection in lambs. Within the first day of life, three groups of 10 lambs were each inoculated with 1 × 106 oocysts of C. parvum. The prophylactic (PROP) group received orally clinoptilolite supplemented at a rate of 3% to the colostrum within the first day of life before inoculation and then to milk replacer for two weeks. The therapeutic (TREA) group was supplemented with the same rate, route and duration of clinoptilolite, starting from the day of the first appearance of oocysts in the faeces. The positive control group (pCON) was left untreated and fed only the basal diet. Disease development and clinoptilolite efficacy were assessed daily by evaluating oocyst per gram of faeces (OPG) counts, faecal consistent score (FCS), and clinical health score (CHS) from day -1 to 20 days post inoculation. A significantly (p < 0.001) lower OPG value was found in the PROP and TREA groups in comparison to the pCON group. The FCS and CHS were decreased in the PROP (p < 0.01 and p < 0.001) and TREA (p < 0.05 and p < 0.001) groups compared to the pCON group, respectively. The percentage efficacy of clinoptilolite was calculated to be 97.4 % in the PROP group and 91.6 % in the TREA group. In conclusion, this study proved for the first time that clinoptilolite has promising prophylactic and therapeutic activities against C. parvum in experimentally infected lambs.
Collapse
Affiliation(s)
- Ceren Dinler Ay
- Department of Internal Medicine, Veterinary Faculty, Aydın Adnan Menderes University, 09100, Aydın, Turkey
| | - Huseyin Voyvoda
- Department of Internal Medicine, Veterinary Faculty, Aydın Adnan Menderes University, 09100, Aydın, Turkey
| | - Pinar Alkim Ulutas
- Department of Biochemistry, Veterinary Faculty, Aydın Adnan Menderes University, 09100, Aydın, Turkey
| | - Tulin Karagenc
- Department of Parasitology, Veterinary Faculty, Aydın Adnan Menderes University, 09100, Aydın, Turkey
| | - Bulent Ulutas
- Department of Internal Medicine, Veterinary Faculty, Aydın Adnan Menderes University, 09100, Aydın, Turkey.
| |
Collapse
|
7
|
Baptista RP, Cooper GW, Kissinger JC. Challenges for Cryptosporidium Population Studies. Genes (Basel) 2021; 12:894. [PMID: 34200631 PMCID: PMC8229070 DOI: 10.3390/genes12060894] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 12/31/2022] Open
Abstract
Cryptosporidiosis is ranked sixth in the list of the most important food-borne parasites globally, and it is an important contributor to mortality in infants and the immunosuppressed. Recently, the number of genome sequences available for this parasite has increased drastically. The majority of the sequences are derived from population studies of Cryptosporidium parvum and Cryptosporidium hominis, the most important species causing disease in humans. Work with this parasite is challenging since it lacks an optimal, prolonged, in vitro culture system, which accurately reproduces the in vivo life cycle. This obstacle makes the cloning of isolates nearly impossible. Thus, patient isolates that are sequenced represent a population or, at times, mixed infections. Oocysts, the lifecycle stage currently used for sequencing, must be considered a population even if the sequence is derived from single-cell sequencing of a single oocyst because each oocyst contains four haploid meiotic progeny (sporozoites). Additionally, the community does not yet have a set of universal markers for strain typing that are distributed across all chromosomes. These variables pose challenges for population studies and require careful analyses to avoid biased interpretation. This review presents an overview of existing population studies, challenges, and potential solutions to facilitate future population analyses.
Collapse
Affiliation(s)
- Rodrigo P. Baptista
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA;
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Garrett W. Cooper
- Department of Genetics, University of Georgia, Athens, GA 30602, USA;
| | - Jessica C. Kissinger
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA;
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
8
|
Zhu G, Yin J, Cuny GD. Current status and challenges in drug discovery against the globally important zoonotic cryptosporidiosis. ANIMAL DISEASES 2021. [DOI: 10.1186/s44149-021-00002-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AbstractThe zoonotic cryptosporidiosis is globally distributed, one of the major diarrheal diseases in humans and animals. Cryptosporidium oocysts are also one of the major environmental concerns, making it a pathogen that fits well into the One Health concept. Despite its importance, fully effective drugs are not yet available. Anti-cryptosporidial drug discovery has historically faced many unusual challenges attributed to unique parasite biology and technical burdens. While significant progresses have been made recently, anti-cryptosporidial drug discovery still faces a major obstacle: identification of systemic drugs that can be absorbed by patients experiencing watery diarrhea and effectively pass through electron-dense (ED) band at the parasite-host cell interface to act on the epicellular parasite. There may be a need to develop an in vitro assay to effectively screen hits/leads for their capability to cross ED band. In the meantime, non-systemic drugs with strong mucoadhesive properties for extended gastrointestinal exposure may represent another direction in developing anti-cryptosporidial therapeutics. For developing both systemic and non-systemic drugs, a non-ruminant animal model exhibiting diarrheal symptoms suitable for routine evaluation of drug absorption and anti-cryptosporidial efficacy may be very helpful.
Collapse
|
9
|
Abstract
Purpose of Review Cryptosporidium spp. (C. hominis and C. parvum) are a major cause of diarrhea-associated morbidity and mortality in young children globally. While C. hominis only infects humans, C. parvum is a zoonotic parasite that can be transmitted from infected animals to humans. There are no treatment or control measures to fully treat cryptosporidiosis or prevent the infection in humans and animals. Our knowledge on the molecular mechanisms of Cryptosporidium-host interactions and the underlying factors that govern infectivity and disease pathogenesis is very limited. Recent Findings Recent development of genetics and new animal models of infection, along with progress in cell culture platforms to complete the parasite lifecycle in vitro, is greatly advancing the Cryptosporidium field. Summary In this review, we will discuss our current knowledge of host-parasite interactions and how genetic manipulation of Cryptosporidium and promising infection models are opening the doors towards an improved understanding of parasite biology and disease pathogenesis.
Collapse
|
10
|
Van Voorhis WC, Hulverson MA, Choi R, Huang W, Arnold SLM, Schaefer DA, Betzer DP, Vidadala RSR, Lee S, Whitman GR, Barrett LK, Maly DJ, Riggs MW, Fan E, Kennedy TJ, Tzipori S, Doggett JS, Winzer P, Anghel N, Imhof D, Müller J, Hemphill A, Ferre I, Sanchez-Sanchez R, Ortega-Mora LM, Ojo KK. One health therapeutics: Target-Based drug development for cryptosporidiosis and other apicomplexa diseases. Vet Parasitol 2021; 289:109336. [PMID: 33418437 PMCID: PMC8582285 DOI: 10.1016/j.vetpar.2020.109336] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
This is a review of the development of bumped-kinase inhibitors (BKIs) for the therapy of One Health parasitic apicomplexan diseases. Many apicomplexan infections are shared between humans and livestock, such as cryptosporidiosis and toxoplasmosis, as well as livestock only diseases such as neosporosis. We have demonstrated proof-of-concept for BKI therapy in livestock models of cryptosporidiosis (newborn calves infected with Cryptosporidium parvum), toxoplasmosis (pregnant sheep infected with Toxoplasma gondii), and neosporosis (pregnant sheep infected with Neospora caninum). We discuss the potential uses of BKIs for the treatment of diseases caused by apicomplexan parasites in animals and humans, and the improvements that need to be made to further develop BKIs.
Collapse
Affiliation(s)
- Wesley C Van Voorhis
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA.
| | - Matthew A Hulverson
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
| | - Ryan Choi
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
| | - Wenlin Huang
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Samuel L M Arnold
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
| | - Deborah A Schaefer
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Dana P Betzer
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Rama S R Vidadala
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Sangun Lee
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, 01536, USA
| | - Grant R Whitman
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
| | - Lynn K Barrett
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Michael W Riggs
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Erkang Fan
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | | | - Saul Tzipori
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, 01536, USA
| | - J Stone Doggett
- Oregon Health & Science University, Portland, OR, 97239, USA
| | - Pablo Winzer
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| | - Nicoleta Anghel
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| | - Dennis Imhof
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
| | - Ignacio Ferre
- Saluvet, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Roberto Sanchez-Sanchez
- Saluvet, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Luis Miguel Ortega-Mora
- Saluvet, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Kayode K Ojo
- Center for Emerging and Re-emerging Infectious Diseases (CERID), Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
11
|
Love MS, McNamara CW. Phenotypic screening techniques for Cryptosporidium drug discovery. Expert Opin Drug Discov 2020; 16:59-74. [PMID: 32892652 DOI: 10.1080/17460441.2020.1812577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Two landmark epidemiological studies identified Cryptosporidium spp. as a significant cause of diarrheal disease in pediatric populations in resource-limited countries. Notably, nitazoxanide is the only approved drug for treatment of cryptosporidiosis but shows limited efficacy. As a result, many drug discovery efforts have commenced to find improved treatments. The unique biology of Cryptosporidium presents challenges for traditional drug discovery methods, which has inspired new assay platforms to study parasite biology and drug screening. Areas covered: The authors review historical advancements in phenotypic-based assays and techniques for Cryptosporidium drug discovery, as well as recent advances that will define future drug discovery. The reliance on phenotypic-based screens and repositioning of phenotypic hits from other pathogens has quickly created a robust pipeline of potential cryptosporidiosis therapeutics. The latest advances involve new in vitro culture methods for oocyst generation, continuous culturing capabilities, and more physiologically relevant assays for testing compounds. Expert opinion: Previous phenotypic screening techniques have laid the groundwork for recent cryptosporidiosis drug discovery efforts. The resulting improved methodologies characterize compound activity, identify, and validate drug targets, and prioritize new compounds for drug development. The most recent improvements in phenotypic assays are poised to help advance compounds into clinical development.
Collapse
Affiliation(s)
- Melissa S Love
- Calibr, a division of The Scripps Research Institute , La Jolla, CA, USA
| | - Case W McNamara
- Calibr, a division of The Scripps Research Institute , La Jolla, CA, USA
| |
Collapse
|
12
|
O’Connor RM, Nepveux V FJ, Abenoja J, Bowden G, Reis P, Beaushaw J, Bone Relat RM, Driskell I, Gimenez F, Riggs MW, Schaefer DA, Schmidt EW, Lin Z, Distel DL, Clardy J, Ramadhar TR, Allred DR, Fritz HM, Rathod P, Chery L, White J. A symbiotic bacterium of shipworms produces a compound with broad spectrum anti-apicomplexan activity. PLoS Pathog 2020; 16:e1008600. [PMID: 32453775 PMCID: PMC7274485 DOI: 10.1371/journal.ppat.1008600] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/05/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
Apicomplexan parasites cause severe disease in both humans and their domesticated animals. Since these parasites readily develop drug resistance, development of new, effective drugs to treat infection caused by these parasites is an ongoing challenge for the medical and veterinary communities. We hypothesized that invertebrate-bacterial symbioses might be a rich source of anti-apicomplexan compounds because invertebrates are susceptible to infections with gregarines, parasites that are ancestral to all apicomplexans. We chose to explore the therapeutic potential of shipworm symbiotic bacteria as they are bona fide symbionts, are easily grown in axenic culture and have genomes rich in secondary metabolite loci [1,2]. Two strains of the shipworm symbiotic bacterium, Teredinibacter turnerae, were screened for activity against Toxoplasma gondii and one strain, T7901, exhibited activity against intracellular stages of the parasite. Bioassay-guided fractionation identified tartrolon E (trtE) as the source of the activity. TrtE has an EC50 of 3 nM against T. gondii, acts directly on the parasite itself and kills the parasites after two hours of treatment. TrtE exhibits nanomolar to picomolar level activity against Cryptosporidium, Plasmodium, Babesia, Theileria, and Sarcocystis; parasites representing all branches of the apicomplexan phylogenetic tree. The compound also proved effective against Cryptosporidium parvum infection in neonatal mice, indicating that trtE may be a potential lead compound for preclinical development. Identification of a promising new compound after such limited screening strongly encourages further mining of invertebrate symbionts for new anti-parasitic therapeutics.
Collapse
Affiliation(s)
- Roberta M. O’Connor
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| | - Felix J. Nepveux V
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Jaypee Abenoja
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Gregory Bowden
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Patricia Reis
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Josiah Beaushaw
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Rachel M. Bone Relat
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Iwona Driskell
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Fernanda Gimenez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Michael W. Riggs
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Deborah A. Schaefer
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Daniel L. Distel
- Ocean Genome Legacy Center, Northeastern University, Nahant, Massachusetts, United States of America
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Timothy R. Ramadhar
- Department of Chemistry, Howard University, Washington DC, United States of America
| | - David R. Allred
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Heather M. Fritz
- California Animal Health and Food Safety Lab, University of California, Davis, California, United States of America
| | - Pradipsinh Rathod
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Laura Chery
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - John White
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|