1
|
Alvarado-Gonzalez C, Clement H, Ballinas-Casarrubias L, Escarcega-Avila A, Arenas-Sosa I, Lopez-Contreras KS, Zamudio F, Corzo G, Espino-Solis GP. Identification and Venom Characterization of Two Scorpions from the State of Chihuahua Mexico: Chihuahuanus coahuliae and Chihuahuanus crassimannus. Toxins (Basel) 2023; 15:416. [PMID: 37505685 PMCID: PMC10467103 DOI: 10.3390/toxins15070416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
Chihuahua is the largest state in Mexico. The ecosystem of this region is composed of large area of bushes, forests, and grasslands, which allows for a specific diversity of fauna; among them are interesting species of non-lethal scorpions. Most of the Chihuahuan scorpions have been previously morphologically and molecularly described; however, this manuscript could be the first to describe the composition of those venoms. This work aimed at the collection of two scorpion species from the region of Jiménez (Southwest of the State of Chihuahua), which belong to the species Chihuahuanus cohauilae and Chihuahuanus crassimanus; the two species were taxonomically and molecularly identified using a 16S DNA marker. Reverse-phase high-performance liquid chromatography (RP-HPLC) of C. coahuilae and C. crassimanus venoms allowed the identification of three fractions lethal to mice. Additionally, three fractions of each scorpion displayed an effect on house crickets. In the end, three new fractions from the venom of C. coahuilae were positive for antimicrobial activity, although none from C. crassimanus venom displayed growth inhibition. Despite being a preliminary study, the venom biochemical analysis of these two uncharacterized scorpion species opens the opportunity to find new molecules with potential applications in the biomedical and biotechnological fields.
Collapse
Affiliation(s)
- Carolina Alvarado-Gonzalez
- Traslational Research Laboratory, Facultad de Medicina y Ciencias Biomédicas, Autonomous University of Chihuahua, Circuito Universitario s/n, Campus II, Chihuahua 31125, Mexico; (C.A.-G.); (K.S.L.-C.)
- Facultad de Ciencias Quimicas, Autonomous University of Chihuahua, Circuito Universitario s/n, Campus II, Chihuahua 31125, Mexico;
| | - Herlinda Clement
- Instituto de Biotecnología—UNAM, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, Mexico; (H.C.); (I.A.-S.); (F.Z.); (G.C.)
| | - Lourdes Ballinas-Casarrubias
- Facultad de Ciencias Quimicas, Autonomous University of Chihuahua, Circuito Universitario s/n, Campus II, Chihuahua 31125, Mexico;
| | - Angelica Escarcega-Avila
- Veterinary Sciences Department, Autonomous University of Ciudad Juarez, Ciudad Juarez 32310, Mexico;
| | - Ivan Arenas-Sosa
- Instituto de Biotecnología—UNAM, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, Mexico; (H.C.); (I.A.-S.); (F.Z.); (G.C.)
| | - Karla Sofia Lopez-Contreras
- Traslational Research Laboratory, Facultad de Medicina y Ciencias Biomédicas, Autonomous University of Chihuahua, Circuito Universitario s/n, Campus II, Chihuahua 31125, Mexico; (C.A.-G.); (K.S.L.-C.)
| | - Fernando Zamudio
- Instituto de Biotecnología—UNAM, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, Mexico; (H.C.); (I.A.-S.); (F.Z.); (G.C.)
| | - Gerardo Corzo
- Instituto de Biotecnología—UNAM, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, Mexico; (H.C.); (I.A.-S.); (F.Z.); (G.C.)
| | - Gerardo Pavel Espino-Solis
- Traslational Research Laboratory, Facultad de Medicina y Ciencias Biomédicas, Autonomous University of Chihuahua, Circuito Universitario s/n, Campus II, Chihuahua 31125, Mexico; (C.A.-G.); (K.S.L.-C.)
- Laboratorio Nacional de Citometría de Flujo, Facultad de Medicina y Ciencias Biomédicas, Autonomous University of Chihuahua, Circuito Universitario s/n, Campus II, Chihuahua 31125, Mexico
| |
Collapse
|
2
|
Effects of the amount and type of carbohydrates used in type 2 diabetes diets in animal models: A systematic review. PLoS One 2020; 15:e0233364. [PMID: 32530969 PMCID: PMC7292416 DOI: 10.1371/journal.pone.0233364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 05/04/2020] [Indexed: 12/28/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is among the most prevalent diseases in the world, affecting over 420 million people. The disease is marked by a poor metabolic effect of insulin leading to chronic hyperglycaemia, which can result in microvascular complications. It is widely known that postprandial glycaemia is reliant on the total carbohydrate content of a meal. However, the importance of the amount and the source of these carbohydrates remains controversial due to mechanisms other than insulin secretion. Oxidative stress, inflammation, pyruvate production and the quality of the intestinal microbiota, resulting in plasma lipopolysaccharides and short-chain fatty acids production, play an important role in blood sugar control and consequently in type 2 diabetes. Thus, we systematically reviewed the preclinical evidences on the impact of the amount and type of carbohydrate found in different diets and its influence on blood glucose levels in diabetic animals. We used a comprehensive and structured search in biomedical databases Medline (PubMed), Scopus and Web of Science, recovering and analyzing 27 original studies. Results showed that sucrose-rich diets deteriorated diabetic condition in animal models regardless of the total dietary carbohydrate content. On the other hand, fiber, particularly resistant starch, improved blood glucose parameters through direct and indirect mechanisms, such as delayed gastric emptying and improved gut microbiota. All studies used rodents as animal models and male animals were preferred over females. Improvements in T2DM parameters in animal models were more closely related to the type of dietary carbohydrate than to its content on a diet, i. e., resistant starch seems to be the most beneficial source for maintaining normoglycemia. Results show that current literature is at high risk of bias due to neglecting experimental methods.
Collapse
|