1
|
Interactions between the Trimeric Autotransporter Adhesin EmaA and Collagen Revealed by Three-Dimensional Electron Tomography. J Bacteriol 2019; 201:JB.00297-19. [PMID: 31160398 DOI: 10.1128/jb.00297-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/24/2019] [Indexed: 11/20/2022] Open
Abstract
Bacterial adhesion to host tissues is considered the first and critical step of microbial infection. The extracellular matrix protein adhesin A (EmaA) is a collagen-binding adhesin of the periodontal pathogen Aggregatibacter actinomycetemcomitans Three 202-kDa EmaA monomers form antenna-like structures on the bacterial surface with the functional domain located at the apical end. The structure of the 30-nm functional domain has been determined by three-dimensional (3D) electron tomography and subvolume averaging. The region exhibits a complex architecture composed of three subdomains (SI to SIII) and a linker between subdomains SII and SIII. However, the molecular interaction between the adhesin receptor complexes has yet to be revealed. This study provides the first detailed 3D structure of reconstituted EmaA/collagen complexes obtained using 3D electron tomography and image processing techniques. The observed interactions of EmaA with collagen were not to whole, intact fibrils, but rather to individual collagen triple helices dissociated from the fibrils. The majority of the contacts with the EmaA functional domain encompassed subdomains SII and SIII and in some cases the tip of the apical domain, involving SI. These data suggest a multipronged mechanism for the interaction of Gram-negative bacteria with collagen.IMPORTANCE Bacterial adhesion is a crucial step for bacterial colonization and infection. In recent years, the number of antibiotic-resistant strains has dramatically increased; therefore, there is a need to search for novel antimicrobial agents. Thus, great efforts are being devoted to develop a clear understanding of the bacterial adhesion mechanism for preventing infections. In host/pathogen interactions, once repulsive forces are overcome, adhesins recognize and tightly bind to specific receptors on the host cell or tissue components. Here, we present the first 3D structure of the interaction between the collagen-binding adhesin EmaA and collagen, which is critical for the development of endocarditis in humans.
Collapse
|
2
|
Radermacher M, Ruiz T. On cross-correlations, averages and noise in electron microscopy. Acta Crystallogr F Struct Biol Commun 2019; 75:12-18. [PMID: 30605121 PMCID: PMC6317458 DOI: 10.1107/s2053230x18014036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/03/2018] [Indexed: 11/16/2022] Open
Abstract
The influence of noise on cross-correlations is revisited. Equations are provided describing the influence of noise on the cross-correlations between single images and averaged images and on those between averaged images. Biological samples are radiation-sensitive and require imaging under low-dose conditions to minimize damage. As a result, images contain a high level of noise and exhibit signal-to-noise ratios that are typically significantly smaller than 1. Averaging techniques, either implicit or explicit, are used to overcome the limitations imposed by the high level of noise. Averaging of 2D images showing the same molecule in the same orientation results in highly significant projections. A high-resolution structure can be obtained by combining the information from many single-particle images to determine a 3D structure. Similarly, averaging of multiple copies of macromolecular assembly subvolumes extracted from tomographic reconstructions can lead to a virtually noise-free high-resolution structure. Cross-correlation methods are often used in the alignment and classification steps of averaging processes for both 2D images and 3D volumes. However, the high noise level can bias alignment and certain classification results. While other approaches may be implicitly affected, sensitivity to noise is most apparent in multireference alignments, 3D reference-based projection alignments and projection-based volume alignments. Here, the influence of the image signal-to-noise ratio on the value of the cross-correlation coefficient is analyzed and a method for compensating for this effect is provided.
Collapse
Affiliation(s)
- Michael Radermacher
- Department of Molecular Physiology and Biophysics, University of Vermont, 149 Beaumont Avenue, Burlington, VT 05405, USA
| | - Teresa Ruiz
- Department of Molecular Physiology and Biophysics, University of Vermont, 149 Beaumont Avenue, Burlington, VT 05405, USA
| |
Collapse
|
3
|
DOLORS: versatile strategy for internal labeling and domain localization in electron microscopy. Structure 2013; 20:1995-2002. [PMID: 23217681 DOI: 10.1016/j.str.2012.10.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/11/2012] [Accepted: 10/31/2012] [Indexed: 11/22/2022]
Abstract
Single-particle electron microscopy (EM) is a powerful tool for studying the structures of large biological molecules. However, the achievable resolution does not always allow for direct recognition of individual protein domains. Labels that can be visualized by EM have been developed for protein termini, but tagging internal domains remains a challenge. We describe a robust strategy for determining the position of internal sites within EM maps, termed domain localization by RCT sampling (DOLORS). DOLORS uses monovalent streptavidin added posttranslationally to tagged sites in the target protein. Internal labels generally display less conformational flexibility than terminal labels, providing more precise positional information. Automated methods are used to rapidly generate assemblies of unique 3D models allowing the attachment sites of labeled domains to be accurately identified and thus provide an overall architectural map of the molecule.
Collapse
|
4
|
A scaffold of accessory subunits links the peripheral arm and the distal proton-pumping module of mitochondrial complex I. Biochem J 2011; 437:279-88. [PMID: 21545356 DOI: 10.1042/bj20110359] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mitochondrial NADH:ubiquinone oxidoreductase (complex I) is a very large membrane protein complex with a central function in energy metabolism. Complex I from the aerobic yeast Yarrowia lipolytica comprises 14 central subunits that harbour the bioenergetic core functions and at least 28 accessory subunits. Despite progress in structure determination, the position of individual accessory subunits in the enzyme complex remains largely unknown. Proteomic analysis of subcomplex Iδ revealed that it lacked eleven subunits, including the central subunits ND1 and ND3 forming the interface between the peripheral and the membrane arm in bacterial complex I. This unexpected observation provided insight into the structural organization of the connection between the two major parts of mitochondrial complex I. Combining recent structural information, biochemical evidence on the assignment of individual subunits to the subdomains of complex I and sequence-based predictions for the targeting of subunits to different mitochondrial compartments, we derived a model for the arrangement of the subunits in the membrane arm of mitochondrial complex I.
Collapse
|
5
|
Dröse S, Krack S, Sokolova L, Zwicker K, Barth HD, Morgner N, Heide H, Steger M, Nübel E, Zickermann V, Kerscher S, Brutschy B, Radermacher M, Brandt U. Functional dissection of the proton pumping modules of mitochondrial complex I. PLoS Biol 2011; 9:e1001128. [PMID: 21886480 PMCID: PMC3160329 DOI: 10.1371/journal.pbio.1001128] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 07/13/2011] [Indexed: 12/28/2022] Open
Abstract
A catalytically active subcomplex of respiratory chain complex I lacks 14 of its 42 subunits yet retains half of its proton-pumping capacity, indicating that its membrane arm has two pump modules. Mitochondrial complex I, the largest and most complicated proton pump of the respiratory chain, links the electron transfer from NADH to ubiquinone to the pumping of four protons from the matrix into the intermembrane space. In humans, defects in complex I are involved in a wide range of degenerative disorders. Recent progress in the X-ray structural analysis of prokaryotic and eukaryotic complex I confirmed that the redox reactions are confined entirely to the hydrophilic peripheral arm of the L-shaped molecule and take place at a remarkable distance from the membrane domain. While this clearly implies that the proton pumping within the membrane arm of complex I is driven indirectly via long-range conformational coupling, the molecular mechanism and the number, identity, and localization of the pump-sites remains unclear. Here, we report that upon deletion of the gene for a small accessory subunit of the Yarrowia complex I, a stable subcomplex (nb8mΔ) is formed that lacks the distal part of the membrane domain as revealed by single particle analysis. The analysis of the subunit composition of holo and subcomplex by three complementary proteomic approaches revealed that two (ND4 and ND5) of the three subunits with homology to bacterial Mrp-type Na+/H+ antiporters that have been discussed as prime candidates for harbouring the proton pumps were missing in nb8mΔ. Nevertheless, nb8mΔ still pumps protons at half the stoichiometry of the complete enzyme. Our results provide evidence that the membrane arm of complex I harbours two functionally distinct pump modules that are connected in series by the long helical transmission element recently identified by X-ray structural analysis. Mitochondria—the power plants of eukaryotic cells—produce energy in the form of ATP. More than one-third of this energy production is driven by a gradient of protons across the mitochondrial membrane created by the pumping action of a very large enzyme called complex I. Defects in complex I are implicated in numerous pathological processes like neurodegeneration and biological aging. Recent X-ray structural analyses revealed that complex I is an L-shaped molecule with one arm integrated into the membrane and the other sticking into the aqueous interior of the mitochondrion; the chemical reactions of the enzyme take place in this hydrophilic arm, clearly separated from proton pumping that must occur somewhere in the membrane arm. To assign the pump function to structural domains, we created a stable subcomplex of complex I by deleting the gene encoding one of its small subunits in a yeast called Yarrowia lipolytica. This subcomplex lacked half of the membrane arm; it was still catalytically active but it pumped only half the number of protons as the full complex. This indicates that complex I has two functionally distinct pump modules operating in its membrane arm.
Collapse
Affiliation(s)
- Stefan Dröse
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Stephanie Krack
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Lucie Sokolova
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
- Institute of Physical and Theoretical Chemistry, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Centre for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Klaus Zwicker
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Hans-Dieter Barth
- Institute of Physical and Theoretical Chemistry, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Centre for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Centre for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Heinrich Heide
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Mirco Steger
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Esther Nübel
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Volker Zickermann
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Stefan Kerscher
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Bernhard Brutschy
- Institute of Physical and Theoretical Chemistry, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Centre for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
| | - Michael Radermacher
- University of Vermont, College of Medicine, Department of Molecular Physiology and Biophysics, Burlington, Vermont, United States of America
| | - Ulrich Brandt
- Molecular Bioenergetics Group, Medical School, Cluster of Excellence Frankfurt “Macromolecular Complexes,” Center for Membrane Proteomics, Johann Wolfgang Goethe-Universität, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
6
|
Mulder AM, Yoshioka C, Beck AH, Bunner AE, Milligan RA, Potter CS, Carragher B, Williamson JR. Visualizing ribosome biogenesis: parallel assembly pathways for the 30S subunit. Science 2010; 330:673-7. [PMID: 21030658 PMCID: PMC2990404 DOI: 10.1126/science.1193220] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ribosomes are self-assembling macromolecular machines that translate DNA into proteins, and an understanding of ribosome biogenesis is central to cellular physiology. Previous studies on the Escherichia coli 30S subunit suggest that ribosome assembly occurs via multiple parallel pathways rather than through a single rate-limiting step, but little mechanistic information is known about this process. Discovery single-particle profiling (DSP), an application of time-resolved electron microscopy, was used to obtain more than 1 million snapshots of assembling 30S subunits, identify and visualize the structures of 14 assembly intermediates, and monitor the population flux of these intermediates over time. DSP results were integrated with mass spectrometry data to construct the first ribosome-assembly mechanism that incorporates binding dependencies, rate constants, and structural characterization of populated intermediates.
Collapse
MESH Headings
- Bacterial Proteins/chemistry
- Bacterial Proteins/metabolism
- Image Processing, Computer-Assisted
- Kinetics
- Mass Spectrometry
- Microscopy, Electron/methods
- Models, Molecular
- Nucleic Acid Conformation
- Protein Binding
- Protein Conformation
- RNA, Bacterial/chemistry
- RNA, Ribosomal/chemistry
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/metabolism
- Ribosome Subunits, Small, Bacterial/chemistry
- Ribosome Subunits, Small, Bacterial/metabolism
- Ribosome Subunits, Small, Bacterial/ultrastructure
Collapse
Affiliation(s)
- Anke M. Mulder
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Craig Yoshioka
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Andrea H. Beck
- Departments of Molecular Biology and Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Anne E. Bunner
- Departments of Molecular Biology and Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Ronald A. Milligan
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Clinton S. Potter
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Bridget Carragher
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - James R. Williamson
- Departments of Molecular Biology and Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
7
|
Lander GC, Khayat R, Li R, Prevelige PE, Potter CS, Carragher B, Johnson JE. The P22 tail machine at subnanometer resolution reveals the architecture of an infection conduit. Structure 2009; 17:789-99. [PMID: 19523897 DOI: 10.1016/j.str.2009.04.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/07/2009] [Accepted: 04/11/2009] [Indexed: 01/03/2023]
Abstract
The portal channel is a key component in the life cycle of bacteriophages and herpesviruses. The bacteriophage P22 portal is a 1 megadalton dodecameric oligomer of gp1 that plays key roles in capsid assembly, DNA packaging, assembly of the infection machinery, and DNA ejection. The portal is the nucleation site for the assembly of 39 additional subunits generated from multiple copies of four gene products (gp4, gp10, gp9, and gp26), which together form the multifunctional tail machine. These components are organized with a combination of 12-fold (gp1, gp4), 6-fold (gp10, trimers of gp9), and 3-fold (gp26, gp9) symmetry. Here we present the 3-dimensional structures of the P22 assembly-naive portal formed from expressed subunits (gp1) and the intact tail machine purified from infectious virions. The assembly-naive portal structure exhibits a striking structural similarity to the structures of the portal proteins of SPP1 and phi29 derived from X-ray crystallography.
Collapse
Affiliation(s)
- Gabriel C Lander
- National Resource for Automated Molecular Microscopy, The Scripps Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Chapter 1 Visualizing functional flexibility by three-dimensional electron microscopy reconstructing complex I of the mitochondrial respiratory chain. Methods Enzymol 2009; 456:3-27. [PMID: 19348880 DOI: 10.1016/s0076-6879(08)04401-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Complex I is the major entry point in the bacterial and mitochondrial respiratory chain. Structural knowledge of the enzyme is still limited because of its large size and complicated architecture. Only the structure of the hydrophilic domain of a bacterial Complex I has been solved to high resolution by X-ray crystallography. To date, no X-ray structure of the complete enzyme has been reported, and most structural information of the holoenzyme has been obtained by 3-D electron microscopy. In this chapter the methods are described used for determining the 3-D reconstruction of Complex I that revealed for the first time a detailed and reproducible domain structure. Complex I is a highly flexible molecule, and methods for calculating the 3-D reconstruction from electron micrographs must take into account this heterogeneity. The techniques described in this chapter can be modified and adapted for the study of more heterogeneous preparations, such as functionalized Complex I. In addition, these techniques are not restricted to the structure determination of Complex I but are appropriate for the 3-D reconstruction of macromolecular assemblies from electron micrographs when inhomogeneities may be present.
Collapse
|
9
|
Benjamin S, Radermacher M, Kirchberger J, Schöneberg T, Edelmann A, Ruiz T. 3D structure of phosphofructokinase from Pichia pastoris: Localization of the novel gamma-subunits. J Struct Biol 2009; 168:345-51. [PMID: 19559794 DOI: 10.1016/j.jsb.2009.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 06/18/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
Abstract
The largest and one of the most complex ATP-dependent allosteric phosphofructokinase (Pfk) has been found in the methylotrophic yeast, Pichia pastoris. The enzyme is a hetero-oligomer ( approximately 1MDa) composed of three distinct subunits (alpha, beta and gamma) with molecular masses of 109, 104 and 41kDa, respectively. While the alpha- and beta-subunits show sequence similarities to other phosphofructokinase subunits, the gamma-subunit does not show high homology to any known protein in the databases. We have determined the first quaternary structure of P. pastoris phosphofructokinase by 3D electron microscopy. Random conical techniques and tomography have been instrumental to ascertain the quality of the sample preparations for structural studies and to obtain a reliable 3D structure. The final reconstruction of P. pastoris Pfk resembles its yeast counterparts with four additional densities, assigned to four gamma-subunits, bridging the N-terminal domains of the four pairs of alpha- and beta-subunits. Our data has evidenced novel interactions between the gamma- and the alpha-subunits comparable in intensity to the interactions, shown by cross-linking and limited proteolytic degradation experiments, between the gamma- and beta-subunits. The structural data provides clear insights into the allosteric fine-tuned regulation of the enzyme by ATP and AMP observed in this yeast species.
Collapse
Affiliation(s)
- Shaun Benjamin
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, 05405, USA
| | | | | | | | | | | |
Collapse
|
10
|
JONIĆ S, SORZANO C, BOISSET N. Comparison of single-particle analysis and electron tomography approaches: an overview. J Microsc 2008; 232:562-79. [DOI: 10.1111/j.1365-2818.2008.02119.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Kayser K, Görtler J, Metze K, Goldmann T, Vollmer E, Mireskandari M, Kosjerina Z, Kayser G. How to measure image quality in tissue-based diagnosis (diagnostic surgical pathology). Diagn Pathol 2008; 3 Suppl 1:S11. [PMID: 18673499 PMCID: PMC2500119 DOI: 10.1186/1746-1596-3-s1-s11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Automated image analysis, measurements of virtual slides, and open access electronic measurement user systems require standardized image quality assessment in tissue-based diagnosis. Aims To describe the theoretical background and the practical experiences in automated image quality estimation of colour images acquired from histological slides. Theory, material and measurements Digital images acquired from histological slides should present with textures and objects that permit automated image information analysis. The quality of digitized images can be estimated by spatial independent and local filter operations that investigate in homogenous brightness, low peak to noise ratio (full range of available grey values), maximum gradients, equalized grey value distribution, and existence of grey value thresholds. Transformation of the red-green-blue (RGB) space into the hue-saturation-intensity (HSI) space permits the detection of colour and intensity maxima/minima. The feature distance of the original image to its standardized counterpart is an appropriate measure to quantify the actual image quality. These measures have been applied to a series of H&E stained, fluorescent (DAPI, Texas Red, FITC), and immunohistochemically stained (PAP, DAB) slides. More than 5,000 slides have been measured and partly analyzed in a time series. Results Analysis of H&E stained slides revealed low shading corrections (10%) and moderate grey value standardization (10 – 20%) in the majority of cases. Immunohistochemically stained slides displayed greater shading and grey value correction. Fluorescent stained slides are often revealed to high brightness. Images requiring only low standardization corrections possess at least 5 different statistically significant thresholds, which are useful for object segmentation. Fluorescent images of good quality only posses one singular intensity maximum in contrast to good images obtained from H&E stained slides that present with 2 – 3 intensity maxima. Conclusion Evaluation of image quality and creation of formally standardized images should be performed prior to automatic analysis of digital images acquired from histological slides. Spatial dependent and local filter operations as well as analysis of the RGB and HSI spaces are appropriate methods to reproduce evaluated formal image quality.
Collapse
Affiliation(s)
- Klaus Kayser
- UICC-TPCC, Institute of Pathology, Charite, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Benjamin S, Radermacher M, Bär J, Edelmann A, Ruiz T. Structures of S. pombe phosphofructokinase in the F6P-bound and ATP-bound states. J Struct Biol 2007; 159:498-506. [PMID: 17643314 PMCID: PMC3586532 DOI: 10.1016/j.jsb.2007.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 06/04/2007] [Accepted: 06/05/2007] [Indexed: 11/26/2022]
Abstract
Phosphofructokinase (Pfk1; EC 2.7.1.11) is the third enzyme of the glycolytic pathway catalyzing the formation of fructose-1,6-bisphosphate from fructose-6-phosphate (F6P) and ATP. Schizosaccharomyces pombe Pfk1 is a homo-octameric enzyme of 800 kDa molecular weight, distinct from its yeast counterparts which are mostly hetero-octameric enzymes composed of two different subunits. Having an "open" conformation and a tendency to aggregate into higher oligomeric structures, the S. pombe enzyme shows similarities to the mammalian muscle Pfk1. It has been proposed that due to the distinct N-terminal region of the S. pombe subunit, the oligomeric organization of subunits in this enzyme is different from other yeast phosphofructokinases. Electron microscopy studies were carried out to reveal the quaternary structure of the homo-octameric Pfk1 from S. pombe in the F6P-bound and in the ATP-bound state. Random conical tilt data sets have been collected from deep stain preparations of the enzyme in both states. The 0 degrees tilt images have been separated into different classes and a 3D reconstruction has been calculated for each class from the high tilt images. Our results confirm the presence of a variety of views of the particle, most of which can be interpreted as views of the molecule rotating around its long axis. Despite the biochemical differences, the structure of phosphofructokinase from S. pombe in the presence of either F6P or ATP is similar to the hetero-octameric structure of phosphofructokinase from Saccharomyces cerevisiae. The molecule can be described as composed of two subdomains, connected by two well-defined densities. We have been able to establish a correlation between the kinetic behavior and the structural conformation of Pfk1.
Collapse
Affiliation(s)
- Shaun Benjamin
- University of Vermont, College of Medicine, Dept. of Molecular Physiology and Biophysics, Burlington, VT 05405
| | - Michael Radermacher
- University of Vermont, College of Medicine, Dept. of Molecular Physiology and Biophysics, Burlington, VT 05405
| | - Jörg Bär
- Institut für Biochemie, Medizinische Fakultät, Universität Leipzig, Johannisallee 30, D-04103 Leipzig, Germany
| | - Anke Edelmann
- Institut für Biochemie, Medizinische Fakultät, Universität Leipzig, Johannisallee 30, D-04103 Leipzig, Germany
| | - Teresa Ruiz
- University of Vermont, College of Medicine, Dept. of Molecular Physiology and Biophysics, Burlington, VT 05405
- To whom correspondence should be addressed: Dr. Teresa Ruiz, University of Vermont, College of Medicine, Dept. of Molecular Physiology and Biophysics, Burlington, VT 05405, e-mail
| |
Collapse
|
13
|
Clason T, Zickermann V, Ruiz T, Brandt U, Radermacher M. Direct localization of the 51 and 24 kDa subunits of mitochondrial complex I by three-dimensional difference imaging. J Struct Biol 2007; 159:433-42. [PMID: 17591445 PMCID: PMC2700006 DOI: 10.1016/j.jsb.2007.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 04/27/2007] [Accepted: 05/02/2007] [Indexed: 11/30/2022]
Abstract
Complex I is the largest complex in the respiratory chain, and the least understood. We have determined the 3D structure of complex I from Yarrowia lipolytica lacking the flavoprotein part of the N-module, which consists of the 51 kDa (NUBM) and the 24 kDa (NUHM) subunits. The reconstruction was determined by 3D electron microscopy of single particles. A comparison to our earlier reconstruction of the complete Y. lipolytica complex I clearly assigns the two flavoprotein subunits to an outer lobe of the peripheral arm of complex I. Localizing the two subunits allowed us to fit the X-ray structure of the hydrophilic fragment of complex I from Thermus thermophilus. The fit that is most consistent with previous immuno-electron microscopic data predicts that the ubiquinone reducing catalytic center resides in the second peripheral lobe, while the 75 kDa subunit is placed near the previously seen connection between the peripheral arm and the membrane arm protrusions.
Collapse
Affiliation(s)
- Todd Clason
- University of Vermont, College of Medicine, Department Molecular Physiology and Biophysics, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
14
|
Bárcena M, Radermacher M, Bär J, Kopperschläger G, Ruiz T. The structure of the ATP-bound state of S. cerevisiae phosphofructokinase determined by cryo-electron microscopy. J Struct Biol 2007; 159:135-43. [PMID: 17493831 PMCID: PMC3586225 DOI: 10.1016/j.jsb.2007.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Revised: 03/26/2007] [Accepted: 03/27/2007] [Indexed: 12/01/2022]
Abstract
Phosphofructokinase (Pfk1, EC 2.7.1.11) plays a key regulatory role in the glycolytic pathway. The combination of X-ray crystallographic and biochemical data has provided an understanding of the different conformational changes that occur between the active and inhibited states of the bacterial enzyme, and of the role of the two bacterial effectors. Eukaryotic phosphofructokinases exhibit a far more sophisticated regulatory mechanism, they are more complex structures regulated by a large number of effectors (around 20). Saccharomyces cerevisiae Pfk1 is an 835 kDa hetero-octamer which shows cooperative binding for fructose-6-phosphate (F6P) and non-cooperative binding for ATP. The 3D structure of the F6P-bound state was obtained by cryo-electron microscopy to 1.1 nm resolution. This electron microscopy structure, in combination with molecular replacement using the bacterial enzyme has helped provide initial phases to solve the X-ray structure of the F6P-bound state 12S yeast truncated-tetramer. Biochemical and small-angle X-ray scattering (SAXS) studies had indicated that Pfk1 underwent a large conformational change upon Mg-ATP binding. We have calculated a reconstruction using reference-based 3D projection alignment methods from 0 degrees images acquired from frozen-hydrated preparations of the enzyme in the presence of Mg-ATP. The ATP-bound structure is more extended or open, and the calculated radius of gyration of 7.33 nm (7.0 nm for F6P) is in good agreement with the SAXS data. There is a substantial decrease in the rotational angle between the top and bottom tetramers. Interestingly, all these changes have arisen from a reorientation of the alpha- and beta-subunits in the dimers. The interface region between the alpha- and beta-subunits is now approximately half the size of the one in the F6P-bound structure. This is the first time that the 3D structure of a eukaryotic Pfk1 has been visualized in its T-state (inhibited-state).
Collapse
Affiliation(s)
- Montserrat Bárcena
- University of Vermont, College of Medicine, Department of Molecular Physiology and Biophysics, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
15
|
Radermacher M, Ruiz T, Clason T, Benjamin S, Brandt U, Zickermann V. The three-dimensional structure of complex I from Yarrowia lipolytica: a highly dynamic enzyme. J Struct Biol 2006; 154:269-79. [PMID: 16621601 PMCID: PMC1764498 DOI: 10.1016/j.jsb.2006.02.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Revised: 02/24/2006] [Accepted: 02/24/2006] [Indexed: 10/24/2022]
Abstract
The structure of complex I from Yarrowia lipolytica was determined by three-dimensional electron microscopy. A random conical data set was collected from deep stain embedded particles. More than 14000 image pairs were analyzed. Through extensive classification combined with three-dimensional reconstruction, it was possible for the first time to show a much more detailed substructure of the complex. The peripheral arm is subdivided in at least six domains. The membrane arm shows two major protrusions on its matrix facing side and exhibits a channel like feature on the side facing the cytoplasm. Structures resembling a tether connecting the subunits near the catalytic center with the protrusions of the membrane arm provide a second connection between matrix and membrane domain.
Collapse
Affiliation(s)
- M Radermacher
- University of Vermont, College of Medicine, Department of Molecular Physiology and Biophysics, Burlington, VT, USA.
| | | | | | | | | | | |
Collapse
|