1
|
Prasher P, Sharma M, Agarwal V, Singh SK, Gupta G, Dureja H, Dua K. Cationic cycloamylose based nucleic acid nanocarriers. Chem Biol Interact 2024; 395:111000. [PMID: 38614318 DOI: 10.1016/j.cbi.2024.111000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
Nucleic acid delivery by viral and non-viral methods has been a cornerstone for the contemporary gene therapy aimed at correcting the defective genes, replacing of the missing genes, or downregulating the expression of anomalous genes is highly desirable for the management of various diseases. Ostensibly, it becomes paramount for the delivery vectors to intersect the biological barriers for accessing their destined site within the cellular environment. However, the lipophilic nature of biological membranes and their potential to limit the entry of large sized, charged, hydrophilic molecules thus presenting a sizeable challenge for the cellular integration of negatively charged nucleic acids. Furthermore, the susceptibility of nucleic acids towards the degrading enzymes (nucleases) in the lysosomes present in cytoplasm is another matter of concern for their cellular and nuclear delivery. Hence, there is a pressing need for the identification and development of cationic delivery systems which encapsulate the cargo nucleic acids where the charge facilitates their cellular entry by evading the membrane barriers, and the encapsulation shields them from the enzymatic attack in cytoplasm. Cycloamylose bearing a closed loop conformation presents a robust candidature in this regard owing to its remarkable encapsulating tendency towards nucleic acids including siRNA, CpG DNA, and siRNA. The presence of numerous hydroxyl groups on the cycloamylose periphery provides sites for its chemical modification for the introduction of cationic groups, including spermine, (3-Chloro-2 hydroxypropyl) trimethylammonium chloride (Q188), and diethyl aminoethane (DEAE). The resulting cationic cycloamylose possesses a remarkable transfection efficiency and provides stability to cargo oligonucleotides against endonucleases, in addition to modulating the undesirable side effects such as unwanted immune stimulation. Cycloamylose is known to interact with the cell membranes where they release certain membrane components such as phospholipids and cholesterol thereby resulting in membrane destabilization and permeabilization. Furthermore, cycloamylose derivatives also serve as formulation excipients for improving the efficiency of other gene delivery systems. This review delves into the various vector and non-vector-based gene delivery systems, their advantages, and limitations, eventually leading to the identification of cycloamylose as an ideal candidate for nucleic acid delivery. The synthesis of cationic cycloamylose is briefly discussed in each section followed by its application for specific delivery/transfection of a particular nucleic acid.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India.
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, 248007, India
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, 124001, India
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
2
|
Abstract
With the recent advances in regenerative medicine, nanotechnology has created a niche for itself as a promising avenue in this field. Innumerable studies have been carried out by researchers using virus-based methodologies for the purpose of epigenetic reprogramming. Although this method is ostensibly safe, nonetheless, they are tagged with the risk of viral genome integration into the host genome or insertional mutagenesis. Transient transfection by the use of nanocarriers is the best way to overcome these problems. This review focuses on some of the significant works carried out by researchers utilizing nanocarrier systems that have shown promising results and thus created a landmark in the epigenetic reprogramming.
Collapse
|
3
|
Ahmed AU, Tyler MA, Thaci B, Alexiades NG, Han Y, Ulasov IV, Lesniak MS. A comparative study of neural and mesenchymal stem cell-based carriers for oncolytic adenovirus in a model of malignant glioma. Mol Pharm 2011; 8:1559-72. [PMID: 21718006 DOI: 10.1021/mp200161f] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glioblastoma multiforme is a primary malignancy of the central nervous system that is universally fatal due to its disseminated nature. Recent investigations have focused on the unique tumor-tropic properties of stem cells as a novel platform for targeted delivery of anticancer agents to the brain. Neural stem cells (NSCs) and mesenchymal stem cells (MSCs) both have the potential to function as cell carriers for targeted delivery of a glioma restricted oncolytic virus to disseminated tumor due to their reported tumor tropism. In this study, we evaluated NSCs and MSCs as cellular delivery vehicles for an oncolytic adenovirus in the context of human glioma. We report the first preclinical comparison of the two cell lines and show that, while both stem cell lines are able to support therapeutic adenoviral replication intracellularly, the amount of virus released from NSCs was a log higher than the MSC (p < 0.001). Moreover, only virus loaded NSCs that were administered intracranially in an orthotopic glioma model significantly prolonged the survival of tumor bearing animals (median survival for NSCs 68.5 days vs 44 days for MSCs, p < 0.002). Loading oncolytic adenovirus into NSCs and MSCs also led to expression of both pro- and anti-inflammatory genes and decreased vector-mediated neuroinflammation. Our results indicate that, despite possessing a comparable migratory capacity, NSCs display superior therapeutic efficacy in the context of intracranial tumors. Taken together, these findings argue in favor of NSCs as an effective cell carrier for antiglioma oncolytic virotherapy.
Collapse
Affiliation(s)
- Atique U Ahmed
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Zhang XX, Prata CAH, Berlin JA, McIntosh TJ, Barthelemy P, Grinstaff MW. Synthesis, characterization, and in vitro transfection activity of charge-reversal amphiphiles for DNA delivery. Bioconjug Chem 2011; 22:690-9. [PMID: 21456532 DOI: 10.1021/bc1004526] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A series of charge-reversal lipids were synthesized that possess varying chain lengths and end functionalities. These lipids were designed to bind and then release DNA based on a change in electrostatic interaction with DNA. Specifically, a cleavable ester linkage is located at the ends of the hydrocarbon chains. The DNA release from the amphiphile was tuned by altering the length and position of the ester linkage in the hydrophobic chains of the lipids through the preparation of five new amphiphiles. The amphiphiles and corresponding lipoplexes were characterized by DSC, TEM, and X-ray, as well as evaluated for DNA binding and DNA transfection. For one specific charge-reversal lipid, stable lipoplexes of approximately 550 nm were formed, and with this amphiphile, effective in vitro DNA transfection activities was observed.
Collapse
Affiliation(s)
- Xiao-Xiang Zhang
- Departments of Biomedical Engineering and Chemistry, Boston University , Boston, Massachusetts 02215, United States
| | | | | | | | | | | |
Collapse
|
5
|
Zhang XX, Allen PG, Grinstaff M. Macropinocytosis is the major pathway responsible for DNA transfection in CHO cells by a charge-reversal amphiphile. Mol Pharm 2011; 8:758-66. [PMID: 21449536 DOI: 10.1021/mp100366h] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The cellular uptake of a functional charge-reversal amphiphile:DNA lipoplex is described. First, pharmacological inhibitors were applied to block different endocytosis pathways. By examining the resulting transfection activities, it was found that endocytosis was the pathway leading to transfection in Chinese hamster ovary (CHO) cells. When the specific pathway of macropinocytosis was inhibited, β-galactosidase expression was significantly depleted (90%); meanwhile the inhibition of clathrin-mediated pathway only brought a 30% decrease in expression; and the inhibition of caveolae-mediated pathway did not affect expression. Furthermore, a transfection kinetics study revealed that the cellular uptake responsible for gene expression was a slower process compared to clathrin-mediated endocytosis, consistent with fluid-phase uptake compared to receptor-mediated uptake. Next, a fluorescence colocalization study was used to visualize the DNA lipoplex uptake pathways. The colocalization of the DNA lipoplex and Cascade Blue, a fluid-phase uptake marker, was observed. Meanwhile, the colocalization of the DNA lipoplex and transferrin, a clathrin-mediated endocytosis marker, was also seen. However, no colocalization was observed with the endosome/lysosome marker Lysotracker. Our results indicate that macropinocytosis, not the commonly seen clathrin-mediated endocytosis for cationic lipids, is the major pathway leading to gene transfection in CHO cells for this charge-reversal amphiphile.
Collapse
Affiliation(s)
- Xiao-Xiang Zhang
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
6
|
Zhang XX, Prata CAH, McIntosh TJ, Barthélémy P, Grinstaff MW. The effect of charge-reversal amphiphile spacer composition on DNA and siRNA delivery. Bioconjug Chem 2010; 21:988-93. [PMID: 20433165 DOI: 10.1021/bc9005464] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A series of charge-reversal amphiphiles with different spacers separating the headgroup from the hydrophobic chains are described for delivery of DNA and siRNA. Among them, the amphiphiles possessing a glycine spacer (e.g., B-GlyGly) showed effective DNA transfection in CHO and NIH 3T3 cells, as well as siRNA gene knockdown in HepG2 and UASMC cells. Ethidium bromide quenching assays revealed that DNA was released the fastest from the lipoplex of B-GlyGly in the presence of esterase. Also, X-ray diffraction results indicated that the DNA was located between the adjacent lipid bilayers in the lipoplex of B-GlyGly. These distinct features appear to be required for high transfection activity.
Collapse
Affiliation(s)
- Xiao-Xiang Zhang
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
7
|
Neural stem cells target intracranial glioma to deliver an oncolytic adenovirus in vivo. Gene Ther 2008; 16:262-78. [PMID: 19078993 DOI: 10.1038/gt.2008.165] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adenoviral oncolytic virotherapy represents an attractive treatment modality for central nervous system (CNS) neoplasms. However, successful application of virotherapy in clinical trials has been hampered by inadequate distribution of oncolytic vectors. Neural stem cells (NSCs) have been shown as suitable vehicles for gene delivery because they track tumor foci. In this study, we evaluated the capability of NSCs to deliver a conditionally replicating adenovirus (CRAd) to glioma. We examined NSC specificity with respect to viral transduction, migration and capacity to deliver a CRAd to tumor cells. Fluorescence-activated cell sorter (FACS) analysis of NSC shows that these cells express a variety of surface receptors that make them amenable to entry by recombinant adenoviruses. Luciferase assays with replication-deficient vectors possessing a variety of transductional modifications targeted to these receptors confirm these results. Real-time PCR analysis of the replication profiles of different CRAds in NSCs and a representative glioma cell line, U87MG, identified the CRAd-Survivin (S)-pk7 virus as optimal vector for further delivery studies. Using in vitro and in vivo migration studies, we show that NSCs infected with CRAd-S-pk7 virus migrate and preferentially deliver CRAd to U87MG glioma. These results suggest that NSCs mediate an enhanced intratumoral distribution of an oncolytic vector in malignant glioma when compared with virus injection alone.
Collapse
|