1
|
Gaillard M, Tranchart H, Lainas P, Trassard O, Remy S, Dubart-Kupperschmitt A, Dagher I. Improving Hepatocyte Engraftment Following Hepatocyte Transplantation Using Repeated Reversible Portal Vein Embolization in Rats. Liver Transpl 2019; 25:98-110. [PMID: 30358068 DOI: 10.1002/lt.25364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023]
Abstract
Hepatocyte transplantation (HT) has emerged as a promising alternative to orthotopic liver transplantation, yet liver preconditioning is needed to promote hepatocyte engraftment. A method of temporary occlusion of the portal flow called reversible portal vein embolization (RPVE) has been demonstrated to be an efficient method of liver preconditioning. By providing an additional regenerative stimulus, repeated reversible portal vein embolization (RRPVE) could further boost liver engraftment. The aim of this study was to determine the efficiency of liver engraftment of transplanted hepatocytes after RPVE and RRPVE in a rat model. Green fluorescent protein-expressing hepatocytes were isolated from transgenic rats and transplanted into 3 groups of syngeneic recipient rats. HT was associated with RPVE in group 1, with RRPVE in group 2, and with sham embolization in the sham group. Liver engraftment was assessed at day 28 after HT on liver samples after immunostaining. Procedures were well tolerated in all groups. RRPVE resulted in increased engraftment rate in total liver parenchyma compared with RPVE (3.4% ± 0.81% versus 1.4% ± 0.34%; P < 0.001). In conclusion, RRPVE successfully enhanced hepatocyte engraftment after HT and could be helpful in the frame of failure of HT due to low cell engraftment.
Collapse
Affiliation(s)
- Martin Gaillard
- INSERM U1193, Hôpital Paul-Brousse, Villejuif, France.,Département Hospitalo-Universitaire Hepatinov, Hôpital Paul-Brousse, Villejuif, France.,Faculté de Médecine Paris-Sud, Université Paris-Saclay, Orsay, France.,Department of Minimally Invasive Surgery, Antoine Beclere Hospital, AP-HP, Clamart, France
| | - Hadrien Tranchart
- INSERM U1193, Hôpital Paul-Brousse, Villejuif, France.,Département Hospitalo-Universitaire Hepatinov, Hôpital Paul-Brousse, Villejuif, France.,Faculté de Médecine Paris-Sud, Université Paris-Saclay, Orsay, France.,Department of Minimally Invasive Surgery, Antoine Beclere Hospital, AP-HP, Clamart, France
| | - Panagiotis Lainas
- INSERM U1193, Hôpital Paul-Brousse, Villejuif, France.,Département Hospitalo-Universitaire Hepatinov, Hôpital Paul-Brousse, Villejuif, France.,Faculté de Médecine Paris-Sud, Université Paris-Saclay, Orsay, France.,Department of Minimally Invasive Surgery, Antoine Beclere Hospital, AP-HP, Clamart, France
| | - Olivier Trassard
- Institut Biomédical Bicêtre UMS32, Hôpital Bicetre, Kremlin-Bicetre, France
| | | | - Anne Dubart-Kupperschmitt
- INSERM U1193, Hôpital Paul-Brousse, Villejuif, France.,Département Hospitalo-Universitaire Hepatinov, Hôpital Paul-Brousse, Villejuif, France.,Faculté de Médecine Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Ibrahim Dagher
- INSERM U1193, Hôpital Paul-Brousse, Villejuif, France.,Département Hospitalo-Universitaire Hepatinov, Hôpital Paul-Brousse, Villejuif, France.,Faculté de Médecine Paris-Sud, Université Paris-Saclay, Orsay, France.,Department of Minimally Invasive Surgery, Antoine Beclere Hospital, AP-HP, Clamart, France
| |
Collapse
|
2
|
Jitraruch S, Dhawan A, Hughes RD, Filippi C, Lehec SC, Glover L, Mitry RR. Cryopreservation of Hepatocyte Microbeads for Clinical Transplantation. Cell Transplant 2018; 26:1341-1354. [PMID: 28901189 PMCID: PMC5680969 DOI: 10.1177/0963689717720050] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Intraperitoneal transplantation of hepatocyte microbeads is an attractive option for the management of acute liver failure. Encapsulation of hepatocytes in alginate microbeads supports their function and prevents immune attack of the cells. Establishment of banked cryopreserved hepatocyte microbeads is important for emergency use. The aim of this study was to develop an optimized protocol for cryopreservation of hepatocyte microbeads for clinical transplantation using modified freezing solutions. Four freezing solutions with potential for clinical application were investigated. Human and rat hepatocytes cryopreserved with University of Wisconsin (UW)/10% dimethyl sulfoxide (DMSO)/5% (300 mM) glucose and CryoStor CS10 showed better postthawing cell viability, attachment, and hepatocyte functions than with histidine-tryptophan-ketoglutarate/10% DMSO/5% glucose and Bambanker. The 2 freezing solutions that gave better results were studied with human and rat hepatocytes microbeads. Similar effects on cryopreserved microbead morphology (external and ultrastructural), viability, and hepatocyte-functions post thawing were observed over 7 d in culture. UW/DMSO/glucose, as a basal freezing medium, was used to investigate the additional effects of cytoprotectants: a pan-caspase inhibitor (benzyloxycarbonyl-Val-Ala-dl-Asp-fluoromethylketone [ZVAD]), an antioxidant (desferoxamine [DFO]), and a buffering and mechanical protectant (human serum albumin [HSA]) on RMBs. ZVAD (60 µM) had a beneficial effect on cell viability that was greater than with DFO (1 mM), HSA (2%), and basal freezing medium alone. Improvements in the ultrastructure of encapsulated hepatocytes and a lower degree of cell apoptosis were observed with all 3 cytoprotectants, with ZVAD tending to provide the greatest effect. Cytochrome P450 activity was significantly higher in the 3 cytoprotectant groups than with fresh microbeads. In conclusion, developing an optimized cryopreservation protocol by adding cytoprotectants such as ZVAD could improve the outcome of cryopreserved hepatocyte microbeads for future clinical use.
Collapse
Affiliation(s)
- Suttiruk Jitraruch
- 1 Dhawan Lab at Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, London, United Kingdom.,2 Department of Pediatrics, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Anil Dhawan
- 1 Dhawan Lab at Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, London, United Kingdom
| | - Robin D Hughes
- 1 Dhawan Lab at Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, London, United Kingdom
| | - Celine Filippi
- 1 Dhawan Lab at Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, London, United Kingdom
| | - Sharon C Lehec
- 1 Dhawan Lab at Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, London, United Kingdom
| | - Leanne Glover
- 3 Centre for Ultrastructural Imaging, King's College London, London, United Kingdom
| | - Ragai R Mitry
- 1 Dhawan Lab at Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, London, United Kingdom
| |
Collapse
|
3
|
Rohn S, Schroeder J, Riedel H, Polenz D, Stanko K, Reutzel-Selke A, Tang P, Brusendorf L, Raschzok N, Neuhaus P, Pratschke J, Sawitzki B, Sauer IM, Mogl MT. Allogeneic Liver Transplantation and Subsequent Syngeneic Hepatocyte Transplantation in a Rat Model: Proof of Concept for in vivo Tissue Engineering. Cells Tissues Organs 2016; 201:399-411. [DOI: 10.1159/000445792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2016] [Indexed: 11/19/2022] Open
Abstract
Objectives: Stable long-term functioning of liver cells after transplantation in humans is still not achieved successfully. A new approach for successful engraftment of liver cells may be the transplantation of syngeneic cells into an allogeneic liver graft. We therefore developed a new rat model for combined liver and liver cell transplantation (cLCTx) under stable immunosuppression. Materials and Methods: After inducing a mitotic block, liver grafts from female donor rats (Dark Agouti) were transplanted into female recipients (Lewis). In male Lewis rats, liver cell proliferation was induced with subsequent cell isolation and transplantation into female recipients after organ transplantation. Y-chromosome detection of the transplanted male cells was performed by quantitative polymerase chain reaction (qPCR) and fluorescence in situ hybridization (FisH) with localization of transplanted cells by immunohistochemistry. Results: Immunohistochemistry demonstrated the engraftment of transplanted cells, as confirmed by FisH, showing repopulation of the liver graft with 15.6% male cells (± 1.8 SEM) at day 90. qPCR revealed 14.15% (± 5.09 SEM) male DNA at day 90. Conclusion: Engraftment of transplanted syngeneic cells after cLCTx was achieved for up to 90 days under immunosuppression. Immunohistochemistry indicated cell proliferation, and the FisH results were partly confirmed by qPCR. This new protocol in rats appears feasible for addressing long-term functioning and eventually the induction of operational tolerance in the future.
Collapse
|
4
|
Tolosa L, López S, Pareja E, Donato MT, Myara A, Nguyen TH, Castell JV, Gómez-Lechón MJ. Human neonatal hepatocyte transplantation induces long-term rescue of unconjugated hyperbilirubinemia in the Gunn rat. Liver Transpl 2015; 21:801-11. [PMID: 25821167 DOI: 10.1002/lt.24121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 03/06/2015] [Accepted: 03/14/2015] [Indexed: 12/12/2022]
Abstract
Crigler-Najjar type 1 disease is a rare inherited metabolic disease characterized by high levels of unconjugated bilirubin due to the complete absence of hepatic uridine diphosphoglucuronate-glucuronosyltransferase activity. Hepatocyte transplantation (HT) has been proposed as an alternative treatment for Crigler-Najjar syndrome, but it is still limited by the quality and the low engraftment and repopulation ability of the cells used. Because of their attachment capability and expression of adhesion molecules as well as the higher proportion of hepatic progenitor cells, neonatal hepatocytes may have an advantage over adult cells. Adult or neonatal hepatocytes were transplanted into Gunn rats, a model for Crigler-Najjar disease. Engraftment and repopulation were studied and compared by immunofluorescence (IF). Additionally, the serum bilirubin levels, the presence of bilirubin conjugates in rat serum, and the expression of uridine diphosphate glucuronosyltransferase 1 family polypeptide A1 (UGT1A1) in rat liver samples were also analyzed. Here we show that neonatal HT results in long-term correction in Gunn rats. In comparison with adult cells, neonatal cells showed better engraftment and repopulation capability 3 days and 6 months after transplantation, respectively. Bilirubinemia decreased in the transplanted animals during the whole experimental follow-up (6 months). Bilirubin conjugates were also present in the serum of the transplanted animals. Western blots and IF confirmed the presence and expression of UGT1A1 in the liver. This work is the first to demonstrate the advantage of using neonatal hepatocytes for the treatment of Crigler-Najjar in vivo.
Collapse
Affiliation(s)
- Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Silvia López
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Eugenia Pareja
- Unidad de Cirugía Hepatobiliopancreática y Transplante Hepático, Hospital La Fe, Valencia, Spain
| | - María Teresa Donato
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Fondo de Investigaciones Sanitarias, Barcelona, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Anne Myara
- Service de Biologie, Groupe Hospitalier Saint Joseph, Paris, France
| | - Tuan Huy Nguyen
- INSERM Unités Mixtes de Recherche en Santé 1064, Centre Hospitalier Universitaire Hôtel Dieu, Nantes, France
| | - José Vicente Castell
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Fondo de Investigaciones Sanitarias, Barcelona, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - María José Gómez-Lechón
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Fondo de Investigaciones Sanitarias, Barcelona, Spain
| |
Collapse
|
5
|
Jitraruch S, Dhawan A, Hughes RD, Filippi C, Soong D, Philippeos C, Lehec SC, Heaton ND, Longhi MS, Mitry RR. Alginate microencapsulated hepatocytes optimised for transplantation in acute liver failure. PLoS One 2014; 9:e113609. [PMID: 25438038 PMCID: PMC4249959 DOI: 10.1371/journal.pone.0113609] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/27/2014] [Indexed: 11/24/2022] Open
Abstract
Background and Aim Intraperitoneal transplantation of alginate-microencapsulated human hepatocytes is an attractive option for the management of acute liver failure (ALF) providing short-term support to allow native liver regeneration. The main aim of this study was to establish an optimised protocol for production of alginate-encapsulated human hepatocytes and evaluate their suitability for clinical use. Methods Human hepatocyte microbeads (HMBs) were prepared using sterile GMP grade materials. We determined physical stability, cell viability, and hepatocyte metabolic function of HMBs using different polymerisation times and cell densities. The immune activation of peripheral blood mononuclear cells (PBMCs) after co-culture with HMBs was studied. Rats with ALF induced by galactosamine were transplanted intraperitoneally with rat hepatocyte microbeads (RMBs) produced using a similar optimised protocol. Survival rate and biochemical profiles were determined. Retrieved microbeads were evaluated for morphology and functionality. Results The optimised HMBs were of uniform size (583.5±3.3 µm) and mechanically stable using 15 min polymerisation time compared to 10 min and 20 min (p<0.001). 3D confocal microscopy images demonstrated that hepatocytes with similar cell viability were evenly distributed within HMBs. Cell density of 3.5×106 cells/ml provided the highest viability. HMBs incubated in human ascitic fluid showed better cell viability and function than controls. There was no significant activation of PBMCs co-cultured with empty or hepatocyte microbeads, compared to PBMCs alone. Intraperitoneal transplantation of RMBs was safe and significantly improved the severity of liver damage compared to control groups (empty microbeads and medium alone; p<0.01). Retrieved RMBs were intact and free of immune cell adherence and contained viable hepatocytes with preserved function. Conclusion An optimised protocol to produce GMP grade alginate-encapsulated human hepatocytes has been established. Transplantation of microbeads provided effective metabolic function in ALF. These high quality HMBs should be suitable for use in clinical transplantation.
Collapse
Affiliation(s)
- Suttiruk Jitraruch
- Institute of Liver Studies, King's College London School of Medicine, London, United Kingdom
| | - Anil Dhawan
- Institute of Liver Studies, King's College London School of Medicine, London, United Kingdom
- * E-mail: (AD); (RRM)
| | - Robin D. Hughes
- Institute of Liver Studies, King's College London School of Medicine, London, United Kingdom
| | - Celine Filippi
- Institute of Liver Studies, King's College London School of Medicine, London, United Kingdom
| | - Daniel Soong
- British Heart Foundation Centre of Excellence Cardiovascular Division, King's College London School of Medicine, London, United Kingdom
| | - Christina Philippeos
- Institute of Liver Studies, King's College London School of Medicine, London, United Kingdom
| | - Sharon C. Lehec
- Institute of Liver Studies, King's College London School of Medicine, London, United Kingdom
| | - Nigel D. Heaton
- Institute of Liver Studies, King's College London School of Medicine, London, United Kingdom
| | - Maria S. Longhi
- Institute of Liver Studies, King's College London School of Medicine, London, United Kingdom
| | - Ragai R. Mitry
- Institute of Liver Studies, King's College London School of Medicine, London, United Kingdom
- * E-mail: (AD); (RRM)
| |
Collapse
|
6
|
Wierstra I. The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res 2013; 118:97-398. [PMID: 23768511 DOI: 10.1016/b978-0-12-407173-5.00004-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor, which stimulates cell proliferation and exhibits a proliferation-specific expression pattern. Accordingly, both the expression and the transcriptional activity of FOXM1 are increased by proliferation signals, but decreased by antiproliferation signals, including the positive and negative regulation by protooncoproteins or tumor suppressors, respectively. FOXM1 stimulates cell cycle progression by promoting the entry into S-phase and M-phase. Moreover, FOXM1 is required for proper execution of mitosis. Accordingly, FOXM1 regulates the expression of genes, whose products control G1/S-transition, S-phase progression, G2/M-transition, and M-phase progression. Additionally, FOXM1 target genes encode proteins with functions in the execution of DNA replication and mitosis. FOXM1 is a transcriptional activator with a forkhead domain as DNA binding domain and with a very strong acidic transactivation domain. However, wild-type FOXM1 is (almost) inactive because the transactivation domain is repressed by three inhibitory domains. Inactive FOXM1 can be converted into a very potent transactivator by activating signals, which release the transactivation domain from its inhibition by the inhibitory domains. FOXM1 is essential for embryonic development and the foxm1 knockout is embryonically lethal. In adults, FOXM1 is important for tissue repair after injury. FOXM1 prevents premature senescence and interferes with contact inhibition. FOXM1 plays a role for maintenance of stem cell pluripotency and for self-renewal capacity of stem cells. The functions of FOXM1 in prevention of polyploidy and aneuploidy and in homologous recombination repair of DNA-double-strand breaks suggest an importance of FOXM1 for the maintenance of genomic stability and chromosomal integrity.
Collapse
|
7
|
Puppi J, Modo M, Dhawan A, Lehec SC, Mitry RR, Hughes RD. Ex vivo magnetic resonance imaging of transplanted hepatocytes in a rat model of acute liver failure. Cell Transplant 2013; 23:329-43. [PMID: 23394812 DOI: 10.3727/096368913x663596] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hepatocyte transplantation is being evaluated as an alternative to liver transplantation. However, the fate of hepatocytes after transplantation is not well defined. The aims of the study were to improve hepatocyte labeling in vitro using superparamagnetic iron oxide nanoparticles (SPIOs) and to perform in vivo experiments on tracking labeled cells by magnetic resonance imaging (MRI). Human and rat hepatocytes were labeled in vitro for 16 h with clinically approved SPIOs (12.5 µg Fe/ml) and protamine sulfate (3 µg/ml) as a transfection agent. Increased cellular iron uptake was obtained, and cell viability and function were shown not to be affected by labeling. Labeled cells (2,000/µl) could be detected on T2-weighted images in vitro using a 7T MR scanner. In a rat model of acute liver failure (ALF), female recipients received intrasplenic transplantation of 2 × 10(7) male rat hepatocytes 28-30 h after intraperitoneal injection of d-galactosamine (1.2 g/kg). There were four groups (n = 4 each): vehicle injection, injection of freshly isolated cells labeled with CM-DiI, injection of cultured cells labeled with CM-DiI, and injection of cultured cells labeled with both SPIOs and CM-DiI. Ex vivo T2*-weighted gradient-echo images at 7T MRI were acquired at day 7 post-ALF induction. Six days after transplantation, SPIOs were detected in the rat liver as a decrease in the MRI signal intensity in the surviving animals. Histologically, most of the SPIOs were located in Kupffer cells, indicating clearance of labeled hepatocytes. Furthermore, labeled cells could not be detected in the liver by the fluorescent dye or by PCR for the Y-chromosome (Sry-2 gene). In conclusion, optimum conditions to label human hepatocytes with SPIOs were established and did not affect cell viability or metabolic function and were sufficient for in vitro MRI detection. However, the clearance of hepatocytes after transplantation limits the value of MRI for assessing long-term hepatocyte engraftment.
Collapse
Affiliation(s)
- Juliana Puppi
- Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, London, UK
| | | | | | | | | | | |
Collapse
|
8
|
Goulinet-Mainot S, Tranchart H, Groyer-Picard MT, Lainas P, Saloum Diop P, Holopherne D, Gonin P, Benihoud K, Ba N, Gauthier O, Franco D, Guettier C, Pariente D, Weber A, Dagher I, Huy Nguyen T. Improved Hepatocyte Engraftment After Portal Vein Occlusion in LDL Receptor-Deficient WHHL Rabbits and Lentiviral-Mediated Phenotypic Correction In Vitro. CELL MEDICINE 2012; 4:85-98. [PMID: 26858856 DOI: 10.3727/215517912x647136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Innovative cell-based therapies are considered as alternatives to liver transplantation. Recent progress in lentivirus-mediated hepatocyte transduction has renewed interest in cell therapy for the treatment of inherited liver diseases. However, hepatocyte transplantation is still hampered by inefficient hepatocyte engraftment. We previously showed that partial portal vein embolization (PVE) improved hepatocyte engraftment in a nonhuman primate model. We developed here an ex vivo approach based on PVE and lentiviral-mediated transduction of hepatocytes from normal (New Zealand White, NZW) and Watanabe heritable hyperlipidemic (WHHL) rabbits: the large animal model of familial hypercholesterolemia type IIa (FH). FH is a life-threatening human inherited autosomal disease caused by a mutation in the low-density lipoprotein receptor (LDLR) gene, which leads to severe hypercholesterolemia and premature coronary heart disease. Rabbit hepatocytes were isolated from the resected left liver lobe, and the portal branches of the median lobes were embolized with Histoacryl® glue under radiologic guidance. NZW and WHHL hepatocytes were each labeled with Hoechst dye or transduced with lentivirus expressing GFP under the control of a liver-specific promoter (mTTR, a modified murine transthyretin promoter) and were then immediately transplanted back into donor animals. In our conditions, 65-70% of the NZW and WHHL hepatocytes were transduced. Liver repopulation after transplantation with the Hoechst-labeled hepatocytes was 3.5 ± 2%. It was 1.4 ± 0.6% after transplantation with either the transduced NZW hepatocytes or the transduced WHHL hepatocytes, which was close to that obtained with Hoechst-labeled cells, given the mean transduction efficacy. Transgene expression persisted for at least 8 weeks posttransplantation. Transduction of WHHL hepatocytes with an LDLR-encoding vector resulted in phenotypic correction in vitro as assessed by internalization of fluorescent LDL ligands. In conclusion, our results have applications for the treatment of inherited metabolic liver diseases, such as FH, by transplantation of lentivirally transduced hepatocytes.
Collapse
Affiliation(s)
| | - Hadrien Tranchart
- INSERM U 972, Univ. Paris-Sud, IFR 93, Bicêtre Hospital , Le Kremlin-Bicêtre , France
| | | | - Panagiotis Lainas
- INSERM U 972, Univ. Paris-Sud, IFR 93, Bicêtre Hospital, Le Kremlin-Bicêtre, France; †Department of General Surgery, Univ. Paris-Sud, Antoine Béclère Hospital, Clamart, France
| | - Papa Saloum Diop
- INSERM U 972, Univ. Paris-Sud, IFR 93, Bicêtre Hospital, Le Kremlin-Bicêtre, France; †Department of General Surgery, Univ. Paris-Sud, Antoine Béclère Hospital, Clamart, France
| | - Delphine Holopherne
- ‡ Department of Animal Surgery, Veterinary School of Nantes , Nantes , France
| | - Patrick Gonin
- ‡ Department of Animal Surgery, Veterinary School of Nantes , Nantes , France
| | - Karim Benihoud
- ¶ CNRS UMR 8203, Institut Gustave Roussy , Villejuif , France
| | - Nathalie Ba
- # IFR 93, Bicêtre Hospital , Le Kremlin-Bicêtre , France
| | - Olivier Gauthier
- ‡ Department of Animal Surgery, Veterinary School of Nantes , Nantes , France
| | - Dominique Franco
- INSERM U 972, Univ. Paris-Sud, IFR 93, Bicêtre Hospital, Le Kremlin-Bicêtre, France; †Department of General Surgery, Univ. Paris-Sud, Antoine Béclère Hospital, Clamart, France
| | - Catherine Guettier
- * Department of Pathology, Bicêtre Hospital , Le Kremlin-Bicêtre , France
| | - Danièle Pariente
- INSERM U 972, Univ. Paris-Sud, IFR 93, Bicêtre Hospital, Le Kremlin-Bicêtre, France; ††Department of Pediatric Radiology, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Anne Weber
- INSERM U 972, Univ. Paris-Sud, IFR 93, Bicêtre Hospital , Le Kremlin-Bicêtre , France
| | - Ibrahim Dagher
- INSERM U 972, Univ. Paris-Sud, IFR 93, Bicêtre Hospital, Le Kremlin-Bicêtre, France; †Department of General Surgery, Univ. Paris-Sud, Antoine Béclère Hospital, Clamart, France
| | - Tuan Huy Nguyen
- ‡‡ INSERM U1064, CHU Hôtel Dieu, Université de Nantes , Nantes , France
| |
Collapse
|
9
|
Di Rocco G, Gentile A, Antonini A, Truffa S, Piaggio G, Capogrossi MC, Toietta G. Analysis of biodistribution and engraftment into the liver of genetically modified mesenchymal stromal cells derived from adipose tissue. Cell Transplant 2012; 21:1997-2008. [PMID: 22469297 DOI: 10.3727/096368911x637452] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Presently, orthotopic liver transplant is the major therapeutic option for patients affected by primary liver diseases. This procedure is characterized by major invasive surgery, scarcity of donor organs, high costs, and lifelong immunosuppressive treatment. Transplant of hepatic precursor cells represents an attractive alternative. These cells could be used either for allogeneic transplantation or for autologous transplant after ex vivo genetic modification. We used stromal cells isolated from adipose tissue (AT-SCs) as platforms for autologous cell-mediated gene therapy. AT-SCs were transduced with lentiviral vectors expressing firefly luciferase, allowing for transplanted cell tracking by bioluminescent imaging (BLI). As a complementary approach, we followed circulating human α1-antitrypsin (hAAT) levels after infusion of AT-SCs overexpressing hAAT. Cells were transplanted into syngeneic mice after CCl(4)-induced hepatic injury. Luciferase bioluminescence signals and serum hAAT levels were measured at different time points after transplantation and demonstrate persistence of transplanted cells for up to 2 months after administration. These data, along with immunohistochemical analysis, suggest engraftment and repopulation of injured livers by transplanted AT-SCs. Moreover, by transcriptional targeting using cellular tissue-specific regulatory sequences, we confirmed that AT-SCs differentiate towards a hepatogenic-like phenotype in vitro and in vivo. Additionally, in transplanted cells reisolated from recipient animals' livers, we detected activation of the α-fetoprotein (AFP) promoter. This promoter is normally transcriptionally silenced in adult tissues but can be reactivated during liver regeneration, suggesting commitment towards hepatogenic-like differentiation of engrafted cells in vivo. Our data support AT-SC-mediated gene therapy as an innovative therapeutic option for disorders of liver metabolism.
Collapse
Affiliation(s)
- Giuliana Di Rocco
- Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Shaw SWS, Bollini S, Nader KA, Gastaldello A, Gastadello A, Mehta V, Filppi E, Cananzi M, Gaspar HB, Qasim W, De Coppi P, David AL. Autologous transplantation of amniotic fluid-derived mesenchymal stem cells into sheep fetuses. Cell Transplant 2010; 20:1015-31. [PMID: 21092404 DOI: 10.3727/096368910x543402] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Long-term engraftment and phenotype correction has been difficult to achieve in humans after in utero stem cell transplantation mainly because of allogeneic rejection. Autologous cells could be obtained during gestation from the amniotic fluid with minimal risk for the fetus and the mother. Using a sheep model, we explored the possibility of using amniotic fluid mesenchymal stem cells (AFMSCs) for autologous in utero stem cell/gene therapy. We collected amniotic fluid (AF) under ultrasound-guided amniocentesis in early gestation pregnant sheep (n = 9, 58 days of gestation, term = 145 days). AFMSCs were isolated and expanded in all sampled fetal sheep. Those cells were transduced using an HIV vector encoding enhanced green fluorescent protein (GFP) with 63.2% (range 38.3-96.2%) transduction efficiency rate. After expansion, transduced AFMSCs were injected into the peritoneal cavity of each donor fetal sheep at 76 days under ultrasound guidance. One ewe miscarried twin fetuses after amniocentesis. Intraperitoneal injection was successful in the remaining 7 fetal sheep giving a 78% survival for the full procedure. Tissues were sampled at postmortem examination 2 weeks later. PCR analysis detected GFP-positive cells in fetal tissues including liver, heart, placenta, membrane, umbilical cord, adrenal gland, and muscle. GFP protein was detected in these tissues by Western blotting and further confirmed by cytofluorimetric and immunofluorescence analyses. This is the first demonstration of autologous stem cell transplantation in the fetus using AFMSCs. Autologous cells derived from AF showed widespread organ migration and could offer an alternative way to ameliorate prenatal congenital disease.
Collapse
Affiliation(s)
- S W Steven Shaw
- Prenatal Cell and Gene Therapy Group, Institute for Women’s Health, University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|